首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper presents the 3D finite element simulation of tidal flow and Sediment transport in the estuarine region of the Haihe river. The proposed model adopts sigma-transformation of the hydrodynamic and sediment transport equations. The hydrodynamic and sediment transport models are verified in case of a simple test problem for which analytical solutions are available. Finally the models are applied to muddy Haihe river estuary of North China and it is claimed that hydrodynamic and sediment transport models give a reliable comparison with the observed field data. However, there are certain discrepancies, and some reasonable questions regarding the present state-of-art, in the modeling of three-dimensional multilevel hydrodynamics and sediment transport, which are provided below for answer.  相似文献   

2.
Natural tidal channels often need deepening for navigation purposes (larger vessels). The depth increase may lead to tidal amplification, salt intrusion over longer distances, and increasing sand and mud import. Increasing fine sediment import, in turn, may start a process in which the sediment concentration progressively increases until the river becomes hyper-turbid, which may lead to increased dredging volumes and to decreased ecological values. These effects can be modeled and studied using detailed 3D models. Reliable simplified models for a first quick engineering evaluation are however lacking. In this paper, we apply both simplified and detailed 3D models to analyze the effects of channel deepening in prismatic and weakly converging tidal channels with saturated mud flow. The objective is to gain quantitative understanding of the effects of channel deepening on mud transport. We developed a simplified tidal mud model describing most relevant processes and effects in saturated mud flows with only minor horizontal transport gradients (quasi uniform conditions). The simplified model is not valid for non-saturated mud flow conditions. This model can either be used in standalone mode or in post-processing mode with computed near-bed velocities from a 3D hydrodynamic model as an input. The standalone model has been compared to various field data sets. Mud transport processes in the mouth region of muddy tidal channels can be realistically represented by the simplified model, if sufficient salinity and sediment data are available for calibration. The simulation of tidal mud transport and the behavior of an estuarine turbidity maximum (ETM) in saturated and non-saturated mud flow conditions cannot be represented by the simplified model and requires the application of a detailed 3D model.  相似文献   

3.
A forward modeling approach is proposed to simulate the preservation potential of tidal flat deposits. The preservation potential is expressed as a function of net deposition rate and a factor that represents the vertical flux of suspended load, or seabed lowering during erosion periods associated with bedload transport. The model takes into account a number of geometric parameters of a tidal flat sediment system and sediment dynamic processes. The former includes high water level, total sediment supply, the annual rate of the supply, the ratio of mud to bilk sediment in the supply, the bed slope of the tidal flat profile, as well as the slope of the stratigraphic boundary; the latter includes spring-neap cycles of tidal water level changes, boundary layer processes, resuspension of fine-grained sediments, bedload transport due to tidal currents, and bed elevation changes in response to sediment movement. Using this model, numerical experiments are carried out for a tidal flat system on the Jiangsu coast, eastern China, with the input data being derived from literature and from a series of sediment cores collected along an onshore–offshore transect. The results show that the preservation potential is highest over the upper part of the inter-tidal zone and in the lower part of the sub-tidal zone, and lowest near mean sea level and at low water on springs. The preservation potential tends to decrease with the advancement of the shoreline. The bed slope, tidal current direction and resuspension intensity influence the spatial distributions of the preservation potential. An implication of these results is that the temporal resolution of the tidal flat record depends upon the location and depth within the deposit; this should be taken into account in the interpretation of sedimentary records. Further studies are required to improve the model, on the hydrodynamic processes associated with extremely shallow water depths, sediment dynamic modeling of bed slope and profile shape, and the combined action of tides and waves for sediment transport on tidal flats.  相似文献   

4.
Natural tidal channels often need deepening for navigation purposes (to facilitate larger vessels). Deepening often leads to tidal amplification, salinity intrusion, and increasing sand and mud import. These effects can be modelled and studied by using detailed 3D models. Reliable simplified models for a first quick evaluation are however lacking. This paper presents a simplified model for sand transport in prismatic and converging tidal channels. The simplified model is a local model neglecting horizontal sand transport gradients. The latter can be included by coupling (as post-processing) the simplified model to a 2DH or 3D flow model. Basic sand transport processes in stratified tidal flow are studied based on the typical example of the tidal Rotterdam Waterway in The Netherlands. The objective is to gain quantitative understanding of the effects of channel deepening on tidal penetration, salinity intrusion, tidal asymmetry, residual density-driven flow, and the net tide-integrated sand transport. We firstly study the most relevant tidal parameters at the mouth and along the channel with simple linear tidal models and numerical 2DH and 3D tidal models. We then present a simplified model describing the transport of sand (TSAND) in tidal channels. The TSAND model can be used to compute the variation of the depth-integrated suspended sand transport and total sand transport (incl. bed-load transport) over the tidal cycle. The model can either be used in stand-alone mode or with computed near-bed velocities from a 3D hydrodynamic model as input data.  相似文献   

5.
We present semi-analytical solutions for suspended sediment concentration (SSC) and residual sediment transport in a simple mathematical model of a short tidal embayment. These solutions allow us to investigate in some detail the characteristic tidal and semi-tidal variation of SSC and the processes leading to residual sediment transport, including settling and scour lags, the roles of ‘local’ and ‘advective’ contributions, and the presence of internally or externally generated overtides. By interpreting the transport mechanisms in terms of the classic conceptual models of settling lag we clarify how these models may be expressed in mathematical terms. Our results suggest that settling lag is usually a more important process than scour lag, and that a local model which neglects advection may predict the direction of net sediment transport incorrectly. Finally, we discuss our results in the context of other transport processes and morphodynamic feedback.  相似文献   

6.
In order to optimize ship navigation in the macrotidal Gironde Estuary, a recent project funded by the port of Bordeaux aims at better understand and forecast hydrodynamic and fine sediment transport within the estuary. In the framework of this project, a two-dimensional hydro-sedimentary model is built. The model includes hydrodynamic forcings, mixed-sediment transport, and consolidation processes. The harmonic analysis of the astronomical tides reveals a strong distortion of the tidal wave inducing the growth of overtide constituents and the non-significant effect of tide-surge interactions in annual-scale prediction. Depending on hydrological conditions, river discharge can considerably alter the model accuracy due to the migration of the turbidity maximum zone modifying the bottom roughness. Comparison with measurements shows the ability of the model to reproduce suspended-sediment concentrations in the central Estuary. Sensitivity of the model to sediment features has also been discussed in regard of suspended-sediment concentrations and fluid mud deposits. The model will be further coupled with ship squat predictions and a morphodynamic model.  相似文献   

7.
The complexity of sediment dynamics in aquatic systems can be better understood by applying numerical models. The development of a comprehensive morphological model is presented in this paper.The model aims to predict the sediment transport and bed evolution in natural systems composed of different sediment types. The morphological model was implemented in MOHID, a modelling system that solves the three-dimensional hydrodynamics and advection-diffusion transport of suspended sediments. Multiple sediment classes were taken into account(non-cohesive and cohesive) considering the effects of sediment mixtures and bed consolidation on resistance to erosion. To represent bottom stratigraphy, the bottom column can be divided into several layers. The key points of the simulated processes are discussed in this paper. Model results are assessed in six test cases through comparison with analytic solutions or experimental data. The outcomes demonstrate the model's capacity to simulate the transport dynamics of non-cohesive and cohesive sediments. The speed up of morphological changes by an acceleration factor permitted modelling bed evolution for long time periods.Moreover, a test case for the Tagus Estuary demonstrated the model's capacity for generating realistic sediment distribution based on the local hydrodynamic conditions. Limitations in the availability of bed composition data can be overcome by considering a warm-up run to provide realistic initial conditions for further predictions of morphological developments.  相似文献   

8.
Bastos  A.  Collins  M.  Kenyon  N. 《Ocean Dynamics》2003,53(3):309-321
Numerical simulations of tidal flow and sand transport around a coastal headland (Portland Bill, southern UK) were undertaken to investigate patterns of sand transport during the development of tidally induced transient eddies. Results obtained from a 2-D finite-element hydrodynamic model (TELEMAC-2D) were combined with a sediment transport model (SEDTRANS), to simulate the sand transport processes around the headland. Simulation of the tidal flow around Portland Bill has shown the formation and evolution of tidally induced transient eddies, around the headland. During the evolution of these transient eddies, no current-induced bedload (transport) eddy is formed for either side of the headland. Net bedload sand transport direction, around a coastal headland, is the result of instantaneous gradients in bedload transport rates, during flood and ebb flows, rather than the average (residual) flow. Thus, the use of residual (water) circulation to describe patterns of sediment movement as bedload is not an appropriatedapproach. In the case study presented here, the distinct characteristics of the coastal and seabed morphology around the Isle of Portland (i.e. headland shape and the bathymetry) indicate that these parameters can be influencing tidal (flow) and sediment dispersion around the headland. Such an interpretation has broader implications and applications to headland-associated sandbanks elsewhere.Responsible Editor: Hans Burchard  相似文献   

9.
Numerical modeling was used in order to study the effect of tidal currents within a breakwater scheme that has reached morphodynamic equilibrium. Tidal flow is simulated, using a downscaling procedure from a regional numerical model, in order to investigate the small-scale hydrodynamic modifications caused by the structures in the absence of waves. Sediment transport processes at different stages of the neap and spring tidal cycle are also considered over the entire scheme. Significant modifications to the tidal currents were identified, caused by the presence of the following structures: (1) obstruction of the main tidal flow and (2) flow channelization between the structures and the coastline, leading to flow acceleration over the salients. Furthermore, the effect of the modified tidal regime on bedload sediment transport processes was investigated. The design characteristics of the scheme (i.e., gap width, offshore distance, and relative angle with respect to the tidal currents) are found to influence locally the tidal flow and the bedload transport, over the top of the salients, modulating their growth. Despite being located in a mixed-energy, wave-dominated environment, the shear stress ratio between currents and waves show a dominance of tidal processes at the sheltered areas of the scheme (i.e., behind the breakwaters) that diminishes as the incident wave period increases. Hence, in order to correctly predict the morphological evolution of such coast under the influence of coastal protection schemes, the tidal processes have to be studied in addition to the wave processes.  相似文献   

10.
A framework to estimate sediment loads based on the statistical distribution of sediment concentrations and various functional forms relating distribution characteristics (e.g. mean and variance) to covariates is developed. The covariates are used as surrogates to represent the main processes involved in sediment generation and transport. Statistical models of increasing complexity are built and compared to assess their relative performance using available sediment concentration and covariate data. Application to the Beaurivage River watershed (Québec, Canada) is conducted using data for the 1989–2004 period. The covariates considered in this application are streamflow and calendar day. A comparison of different statistical models shows that, in this case, the log‐normal distribution with a mean value depending on streamflow (power law with an additive term) and calendar day (sinusoidal), a constant coefficient of variation for streamflow dependence and a constant standard deviation for calendar day dependence provide the best result. Model parameters are estimated using the maximum likelihood estimation technique. The selected model is then used to estimate the distribution of annual sediment loads for the Beaurivage River watershed for a selected period. A bootstrap parametric method is implemented to account for uncertainties in parameter values and to build the distributions of annual loads. Comparison of model results with estimates obtained using the empirical ratio estimator shows that the latter were rarely within the 0·1–0·9 quantile interval of the distributions obtained with the proposed approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
NUMERICAL SIMULATION OF SEDIMENT RELEASE FROM RESERVOIRS   总被引:1,自引:0,他引:1  
1 INTRODUCTION Reservoirs sedimentation is a serious problem in many countries, including the I. R. of Iran. Accumulation of sediment deposits decreases worldwide reservoir storage capacity by one percent per year (Mahmood, 1987). The loss of reservoir st…  相似文献   

12.
Long‐term average rates of channel erosion and sediment transport depend on the frequency–magnitude characteristics of ?ood ?ows that exceed an erosion threshold. Using a Poisson model for rainfall and runoff, analytical solutions are developed for average rates of stream incision and sediment transport in the presence of such a threshold. Solutions are derived and numerically tested for three erosion/transport formulas: the Howard–Kerby shear‐stress incision model, the Bridge–Dominic sediment transport model, and a generic shear‐stress sediment transport model. Results imply that non‐linearity resulting from threshold effects can have a ?rst‐order impact on topography and patterns of dynamic response to tectonic and climate forcing. This non‐linearity becomes signi?cant when fewer than about half of ?ood events are capable of detaching rock or sediment. Predicted morphology and uplift‐gradient scaling is more closely consistent with observations and laboratory experiments than conventional slope‐linear or shear‐linear erosion laws. These results imply that particle detachment thresholds are not details that can be conveniently ignored in long‐term landscape evolution models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Under natural conditions, barrier islands might grow vertically and migrate onshore under the influence of long‐term sea level rise. Sediment is transported onshore during storm‐induced overwash and inundation. However, on many Dutch Wadden Islands, dune openings are closed off by artificial sand‐drift dikes that prevent the influx of sediment during storms. It has been argued that creating openings in the dune row to allow regular flooding on barrier islands can have a positive effect on the sediment budget, but the dominant hydrodynamic processes and their influence on sediment transport during overwash and inundation are unknown. Here, we present an XBeach model study to investigate how sediment transport during overwash and inundation across the beach of a typical mesotidal Wadden Sea barrier island is influenced by wave, tide and storm surge conditions. Firstly, we validated the model XBeach with field data on waves and currents during island inundation. In general, the XBeach model performed well. Secondly, we studied the long‐term sediment transport across the barrier island. We distinguished six representative inundation classes, ranging from frequently occurring, low‐energy events to infrequent, high‐energy events, and simulated the hydrodynamics and sediment transport during these events. An analysis of the model simulations shows that larger storm events cause larger cross‐shore sediment transport, but the net sediment exchange during a storm levels off or even becomes smaller for the largest inundation classes because it is counteracted by larger mean water levels in the Wadden Sea that oppose or even reverse sediment transport during inundation. When taking into account the frequency of occurrence of storms we conclude that the cumulative effect of relatively mild storms on long‐term cross‐shore sediment transport is much larger than that of the large storm events. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

15.
An unstructured mesh model of the west coast of Britain, covering the same domain and using topography and open boundary forcing that are identical to a previous validated uniform grid finite difference model of the region, is used to compare the performance of a finite volume (FV) and a finite element (FE) model of the area in determining tide–surge interaction in the region. Initial calculations show that although qualitatively both models give comparable tidal solutions in the region, comparison with observations shows that the FV model tends to under-estimate tidal amplitudes and hence background tidal friction in the eastern Irish Sea. Storm surge elevations in the eastern Irish Sea due to westerly, northerly and southerly uniform wind stresses computed with the FV model tend to be slightly higher than those computed with the FE model, due to differences in background tidal friction. However, both models showed comparable non-linear tide–surge interaction effects for all wind directions, suggesting that they can reproduce the extensive tide–surge interaction processes that occur in the eastern Irish Sea. Following on from this model comparison study, the physical processes contributing to surge generation and tide–surge interaction in the region are examined. Calculations are performed with uniform wind stresses from a range of directions, and the balance of various terms in the hydrodynamic equations is examined. A detailed comparison of the spatial variability of time series of non-linear bottom friction and non-linear momentum advection terms at six adjacent nodes at two locations in water depths of 20 and 6 m showed some spatial variability from one node to another. This suggests that even in the near coastal region, where water depths are of the order of 6 m and the mesh is fine (of order 0.5 km), there is significant spatial variability in the non-linear terms. In addition, distributions of maximum bed stress due to tides and wind forcing in nearshore regions show appreciable spatial variability. This suggests that intensive measurement campaigns and very high-resolution mesh models are required to validate and reproduce the non-linear processes that occur in these regions and to predict extreme bed stresses that can give rise to sediment movement. High-resolution meshes will also be required in pollution transport problems.  相似文献   

16.
The Minas Basin, the eastern end of the Bay of Fundy, is well known for its high tide ranges and strong tidal currents, which can be exploited to extract electricity power. The properties of the tidally-induced sediment transport in the Minas Basin, where significant changes in tidal processes may occur due to a recently proposed tidal power project, have been studied with a three-dimensional hydrodynamic model, an empirical bed load sediment transport model and surface sediment concentrations derived from the remotely-sensed images. The hydrodynamic model was evaluated against independent observational data, which include tidal elevation, tidal current (in the full water column and bottom layer), residual current profile and tidal asymmetry indicators. The evaluation shows that the model is in good agreement with the observations.The sediment transport includes two components, bed load and suspended particulate load. The bed load is calculated using the modelled bottom shear stress and the observed grain size data. The estimated features of bed load transport roughly agree with the observed patterns of the erosion and deposition in the Minas Basin and Cobequid Bay. The transport of the suspended load is estimated using the modelled velocity fields and the surface sediment concentration derived from remote-sensing images. The comparisons between the modelled results and the limited observations illustrate that the observed directions of suspended sediment transport are basically reproduced by the model. The modelled net suspended sediment input into the Minas Basin through Minas Passage is 2.4×106 m3 yr?1, which is comparable to the observed value of 1.6×106 m3 yr?1.The variations of the bed load and the suspended load in space and time are also presented. The total net transport, defined as the mean value of the sum of bed and suspended load transports during the tidal cycle, shows strong spatial variability. The magnitude of the transport flux ranges from 0.1 to 0.2 kg m?1 s?1 in Minas Channel and Minas Passage, 0.1 kg m?1 s?1 in Cobequid Bay, to 0.01 kg m?1 s?1 in the central Minas Basin and Southern Bight. In Minas Channel, the sediment transport follows the structure of the tidal residual circulation, which features a large anticlockwise gyre. The sediment in Minas Passage moves eastward and deposits into the central Minas Basin. However, the sediment from the eastern part of the Basin moves westward and deposits in the central Minas Basin as well. In the Cobequid Bay, sediment moves eastward and deposits in the upper bay.  相似文献   

17.
Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic model guarantees that modeled geomorphic evolution will not exceed the actual supply of sediment from the watershed and seaward sources during the calibration period. Decadal trends in sediment supply (and therefore fluxes) can accumulate to alter decadal geomorphic change. Therefore, simulations of future geomorphic evolution are bolstered by this intermediate calibration step.  相似文献   

18.
One of the primary objectives of coastal research is the erection and testing of mechanically sound, predictive models for the two- and three-dimensional form of beach and nearshore bathymetries in order to account for and to predict coastal response to changing wave, tidal and sea-level conditions. The relationship between flow parameters and the mass transport of non-cohesive sedimentary particles has long been of importance in fluvial, aeolian and marine environments, but despite the existence of many numerical beach models, any of which might be developed to account for longer-term evolution, it is apparent that fundamental problems remain, not only in the representation of hydrodynamic and sediment dynamic processes but also in the choice of appropriate forcing functions for long-term simulations in real-time or quasi-real-time. An alternative is developed here in which frequency domain representations of a simplified set of process and response algorithms are presented, so that hydrodynamic, sediment dynamic and geomorphological parameters are related by a simple series of spectral gain functions. In particular, we concentrate on the relationship between the nearbed orthogonal flow spectrum and the resulting sediment mass transport rate. Numerical solutions, using both non-linear and linearized forms of the momentum equation, are presented.  相似文献   

19.
Numerical modelling of morphodynamics—Vilaine Estuary   总被引:1,自引:0,他引:1  
The main objective of this paper is to develop a method to simulate long-term morphodynamics of estuaries dominated by fine sediments, which are subject to both tidal flow and meteorologically induced variations in freshwater run-off and wave conditions. The method is tested on the Vilaine Estuary located in South Brittany, France. The estuary is subject to a meso–macrotidal regime. The semi-diurnal tidal range varies from around 2.5 to 5 m at neap and spring, respectively. The freshwater input is controlled by a dam located approximately 8 km from the mouth of the estuary. Sediments are characterised as mostly fines, but more sandy areas are also found. The morphology of the estuary is highly influenced by the dam. It is very dynamic and changes in a complicated manner with the run-off from the dam, the tide and the wave forcing at the mouth of the estuary. Extensive hydrodynamic and sediment field data have been collected in the past and provide a solid scientific basis for studying the estuary. Based on a conceptual understanding of the morphodynamics, a numerical morphological model with coupled hydrodynamic, surface wave and sediment transport models is formulated. The numerical models are calibrated to reproduce sediment concentrations, tidal flat altimetry and overall sediment fluxes. Scaling factors are applied to a reference year to form quasi-realistic hydrodynamic forcing and river run-off, which allow for the simulations to be extended to other years. The simulation results are compared with observed bathymetric changes in the estuary during the period 1998–2005. The models and scaling factors are applied to predict the morphological development over a time scale of up to 10 years. The influence of the initial conditions and the sequence of external hydrodynamic forcing, with respect to the morphodynamic response of the estuary, are discussed.  相似文献   

20.
Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号