首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

2.
Over the last century, afforestation in Ireland has increased from 1% of the land area to 10%, with most plantations on upland drained blanket peatlands. This land use change is considered to have altered the hydrological response and water balance of upland catchments with implications for water resources. Because of the difficulty of observing these long‐term changes in the field, the aim of this study was to utilize a hydrological model to simulate the rainfall runoff processes of an existing pristine blanket peatland and then to simulate the hydrology of the peatland if it were drained and afforested. The hydrological rainfall runoff model (GEOtop) was calibrated and validated for an existing small (76 ha) pristine blanket peatland in the southwest of Ireland for the 2‐year period, 2007–2008. The current hydrological response of the pristine blanket peatland catchment with regard to streamflow and water table (WT) levels was captured well in the simulations. Two land use change scenarios of afforestation were also examined, (A) a young 10‐year‐old and (B) a semi‐mature 15‐year‐old Sitka Spruce forest. Scenario A produced similar streamflow dynamics to the pristine peatland, whereas total annual streamflow from Scenario B was 20% lower. For Scenarios A and B, on an annual average basis, the WT was drawn down by 16 and 20 cm below that observed in the pristine peatland, respectively. The maximum WT draw down in Scenario B was 61 cm and occurred in the summer months, resulting in a significant decrease in summer streamflow. Occasionally in the winter (following rainfall), the WT for Scenario B was just 2 cm lower than the pristine peatland, which when coupled with the drainage networks associated with afforestation led to higher peak streamflows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Composition and abundance of persistent buoyant litter (plastics, polystyrene and manufactured wood) were investigated at riversides and on adjacent coastal beaches of four rivers flowing into the SE Pacific Ocean. Persistent buoyant litter made up the main share of litter at riversides (36–82%) and on coastal beaches near the river mouths (67–86%). The characteristic litter composition of each river is attributable to human influences along its course. Riverine litter items were deposited to both sides of the river mouths on coastal beaches, and their abundance generally declined with distance from the river mouth. However, maximum litter accumulations were often found on beaches north of the river mouth, suggesting a long-term influence of the prevailing equatorward low-level jet along the Chilean coast. The results confirm that riverine transport has an important impact on litter abundances on coastal beaches.  相似文献   

4.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
As climate change may modify the hydrological cycle significantly, understanding the impact on river flow is important because it affects long‐term water resources planning. Here, we describe a high‐resolution British assessment of changes in river flows in the 2050s under 11 different realisations of HadRM3. In winter, river flows may either increase or decrease, with a wide range of possible decreases in summer flow. These results should encourage adaptation that copes with a broad range of future hydrological conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The majority of the world's mangrove forests occur on mostly mineral sediments of fluvial origin. Two perspectives exist on the biogeomorphic development of these forests, i.e. that mangroves are opportunistic, with forest development primarily driven by physical processes, or alternatively that biophysical feedbacks strongly influence sedimentation and resulting geomorphology. On the Firth of Thames coast, New Zealand, we evaluate these two possible scenarios for sediment accumulation and forest development using high‐resolution sedimentary records and a detailed chronology of mangrove‐forest (Avicennia marina) development since the 1950s. Cores were collected along a shore‐normal transect of known elevation relative to mean sea level (MSL). Activities for lead‐210 (210Pb), caesium‐137 (137Cs) and beryllium‐7 (7Be), and sediment properties were analysed, with 210Pb sediment accumulation rates (SARs), compensated for deep subsidence (~8 mm yr?1) used as a proxy for elevation gain. At least four phases of forest development since the 1950s are recognized. An old‐growth forest developed by the late‐1970s with more recent seaward forest expansion thereafter. Excess 210Pb profiles from the old‐growth forest exhibit relatively low SARs near the top (7–12 mm yr?1) and bottom (10–22 mm yr?1) of cores, separated by an interval of higher SARs (33–100 mm yr?1). A general trend of increasing SAR over time characterizes the recent forest. Biogeomorphic evolution of the system is more complex than simple mudflat accretion/progradation and mangrove‐forest expansion. Surface‐elevation gain in the old‐growth forest displays an asymptotic trajectory, with a secondary depocentre developing on the seaward mudflat from the mid‐1970s. Two‐ to ten‐fold increases in 210Pb SARs are unambiguously large and occurred years to decades before seedling recruitment, demonstrating that mangroves do not measurably enhance sedimentation over annual to decadal timescales. This suggests that mangrove‐forest development is largely dependent on physical processes, with forests occupying mudflats once they reach a suitable elevation in the intertidal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A growing body of field, theoretical and numerical modelling studies suggests that predicting river response to even major changes in input variables is difficult. Rivers are seen to adjust rapidly and variably through time and space as well as changing independently of major driving variables. Concepts such as Self‐Organized Criticality (SOC) are considered to better reflect the complex interactions and adjustments occurring in systems than traditional approaches of cause and effect. This study tests the hypothesis that riverbank mass failures which occurred both prior to, and during, an extreme flood event in southeast Queensland (SEQ) in 2011 are a manifestation of SOC. Each wet‐flow failure is somewhat analogous to the ‘avalanche’ described in the initial sand‐pile experiments of Bak et al. (Physical Review Letters, 1987, 59(4), 381–384) and, due to the use of multitemporal LiDAR, the time period of instability can be effectively constrained to that surrounding the flood event. The data is examined with respect to the key factors thought to be significant in evaluating the existence of SOC including; non‐linear temporal dynamics in the occurrence of disturbance events within the system; an inverse power‐law relation between the magnitude and frequency of the events; the existence of a critical state to which the system readjusts after a disturbance; the existence of a cascading processes mechanism by which the same process can initiate both low‐magnitude and high‐magnitude events. While there was a significant change in the frequency of mass failures pre‐ and post‐flood, suggesting non‐linear temporal dynamics in the occurrence of disturbance events, the data did not fit an inverse power‐law within acceptable probability and other models were found to fit the data better. Likewise, determining a single ‘critical’ state is problematic when a variety of feedbacks and multiple modes of adjustment are likely to have operated throughout this high magnitude event. Overall, the extent to which the data supports a self‐organized critical state is variable and highly dependent upon inferential arguments. Investigating the existence of SOC, however, provided results and insights that are useful to the management and future prediction of these features. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The focus of this work is to explore the use of the netted whelk, Nassarius reticulatus (L.), as an indicator of mercury (Hg) contamination, by assessing the concentration of Hg in the sediments and in the whelk along the entire Portuguese coast. Total Hg concentrations ranged from below the detection limit (0.01 ng absolute mercury) up to 0.87 mg kg(-1) dry weight (dwt) in sediments and between 0.06 and 1.02 mg kg(-1) (dwt) for organisms, with no significant differences between males and females. Although organic mercury was not detected in the sediments, it represented, on average, 52% of the total Hg in the whelk tissues, and as high as 88% in some cases, suggesting mercury accumulation from dietary intake. Significant negative correlations were found between the total Hg concentrations in the sediments and the log(10) of Hg concentrations in whelk tissues males (r=-0.64; P<0.01) and females (r=-0.52; P<0.01) indicating that the species is a poor indicator of Hg contamination. Nevertheless, since the highest concentrations of organic mercury in the whelk tissues were found in the least contaminated areas, this species must be highly relevant in the trophic web, namely on the possible biomagnification of mercury. The high dietary mercury accumulation from feeding on carrion and the low bioavailability of mercury to whelks in estuarine sediments may be the basis of the mercury accumulation pattern in N. reticulatus.  相似文献   

9.
A nitrate sensor has been set up to measure every 10 min the nitrate signal in a stream draining a small agricultural catchment dominated by fertilized crops during a 2‐year study period (2006–2008) in the south‐west of France. An in situ sampling protocol using automatic sampler to monitor flood events have been used to assume a point‐to‐point calibration of the sensor values. The nitrate concentration exhibits nonsystematic concentration and dilution effects during flood events. We demonstrate that the calibrated nitrate sensor signal gathered from the outlet is considered to be a continuous signal using the Nyquist–Shannon sampling theorem. The objectives of this study are to quantify the errors generated by a typical infrequent sampling protocol and to design appropriate sampling strategy according to the sampling objectives. Nitrate concentration signal and flow data are numerically sampled to simulate common sampling frequencies. The total fluxes calculated from the simulated samples are compared with the reference value computed on the continuous signal. Uncertainties are increasing as sampling intervals increase; the method that is not using continuous discharge to compute nitrate fluxes bring larger uncertainty. The dispersion and bias computed for each sampling interval are used to evaluate the uncertainty during each hydrological period. High underestimation is made during flood periods when high‐concentration period is overlooked. On the contrary, high sampling frequencies (from 3 h to 1 day) lead to a systematic overestimation (bias around 3%): highest concentrations are overweighted by the interpolation of the concentration in such case. The in situ sampling protocol generates less than 1% of load estimation error and sample highest concentration peaks. We consider useful such newly emerging field technologies to assess short‐term variations of water quality parameters, to minimize the number of samples to be analysed and to assess the quality state of the stream at any time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We investigate possible changes in flood hazard over a 77-km2 area around the city of Ravenna. The subsidence rate in the area, naturally a few mm year?1, increased dramatically after World War II because of groundwater and natural gas extraction, exceeding 110?mm year?1 and resulting in cumulative drops larger than 1.5?m. The Montone–Ronco river system flows in the southern portion of the area, which is protected against frequent flooding by levees. We performed two-dimensional simulations of inundation events associated with levee breaching by considering four different terrain configurations: current topography and a reconstruction of ground elevations before anthropogenic land subsidence, both neglecting and representing the main linear infrastructures (e.g. roads, artificial channels). Results show that flood-hazard changes due to anthropogenic land subsidence (e.g. significant changes in computed water depth and velocity) are observed over less than 10% of the study area and are definitely less important than those resulting from construction of the linear infrastructures.  相似文献   

11.
Morphological change in river channels is frequently evaluated in the context of mass balance sediment budgets. In a closed sediment budget, measurements of sediment influx and efflux are coupled with measured changes in channel topography to provide both spatial and temporal resolution, and independent estimates of the mass balance. For sediment budgets constructed over long river segments (~102 channel widths or greater) and long periods (~2 years or longer), spatial and temporal accumulation of measurement uncertainty, compounded by inadequate sampling frequency or spatial coverage, may produce indeterminate results. The degree of indeterminacy may be evaluated in the context of a signal-to-noise ratio (SNR), which is a function of the magnitude of the mass balance and the magnitudes of potential systematic uncertainties associated with measurements and incomplete sampling. We report on a closed sand budget consisting of measurements of flux and two morphological surveys for a 50-km segment of a large river over a 3-year period. Accurate reporting of the magnitude and sign of the change in sand storage was only possible by using state-of-the-art techniques with high temporal frequency and large spatial extent. Together, a sand flux and morphological mass balance revealed that sand evacuation was temporally concentrated (~100% of mass change occurred during 19% of the study period) and highly localized (70% of mass change occurred in 12% of the study segment). A SNR analysis revealed that uncertainty resulting from undersampling may approach or exceed that caused by measurement uncertainty and that daily sampling of suspended-sand concentration or repeat mapping of at least 50% of the river segment was required to determine the sand budget with SNR > 1. The approach used here to analyze sand budget uncertainty is especially applicable to other river systems with large temporal variability in sediment transport and large spatial variability in erosion and deposition. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Formic acid is the major contributor to acid rain in some regions but its sources are not fully understood. We investigated the aqueous‐phase reactions of HCHO (aq) and OH . radicals at enlarged rainwater pH values (2.49–5.89) in Guiyang, China from May 2006 to April 2007. Our results show that there were no significant correlation between the [HCOOH]t/[HCHO] (aq) and the rainwater pH. The ratio did not appear to vary consistently as a function of rainwater pH as predicted by theoretical model. In addition, we saw no clear evidence that oxidation of HCHO (aq) would produce significant HCOOH (aq) which indicates this reaction may be only a minor contribution to the budget of HCOOH (g) in atmosphere. Further investigation is strongly suggested to be carried out in field cloud water, fog water, or rainwater because the ratios would be diverged from equilibrium value as a result of other chemical or physical processes.  相似文献   

13.
14.
Gullies are conceptualized in the literature as essentially fluvial forms with dimensional boundaries arbitrarily defined between rills and river channels. This notion is incompatible with the existing variability of form and process, as mass movements frequently exert a fundamental control on gully initiation and expansion, to the point of features outgrowing their original contributing area. The inability of a conceptual framework to incorporate existing observations inevitably constrains methodologies and research results. In this commentary, several examples of published results are contrasted with the prevailing assumption of an essentially fluvial nature, with the purpose of encouraging discussion on the need for a revised conceptual framework in gully erosion research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP “Pomici di Base”, 8900 yr cal BP “Mercato Pumice”, 4300 yr cal BP “Avellino Pumice”, and A.D. 79 “Pompeii Pumice”) are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B–M (between Pomici di Base and Mercato); 2. M–A (between Mercato and Avellino); 3. A–P (between Avellino and Pompeii); 4. P–XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping in the recognition, frequently not obvious, of distal products from the different single eruptions.  相似文献   

16.
Fluvial bank erosion rates are often quantified by assuming that the erosion rate is a function of the excess (above a critical threshold) boundary shear stress applied by the flow. Research has shown that the form roughness induced by natural topographic bank features, such as slumps, spurs and embayments, is the dominant component of the spatially‐averaged total shear stress, meaning that form roughness provides an important control on bank erosion rates. However, measuring the relative components of the total shear stress for a natural system is not straightforward. In this work we use the method of Kean and Smith to partition the form and skin drag components of river bank roughness using a time series (2005–2011) of high‐resolution topographic surveys of an eroding bank of the Cecina River in central Italy. This method approximates the form drag component of the roughness along a longitudinal bank profile as a series of user‐defined Gaussian curves. The extracted metrics are used in conjunction with an estimate of the outer region flow velocity to partition the form and skin drag components of the total boundary shear stress according to the Kean and Smith analytical solution. The relative magnitude of the form and skin shear stress at each survey date is analysed alongside DEMs of difference to reveal that intense episodes of erosion are followed by periods of quiescence. We show that this is due to the protection offered by increased form drag roughness following erosion. We conceptualise the dynamic feedbacks that exist between river discharge, bank erosion processes and bank form roughness, into a simple model of the self‐limiting nature of river bank erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
Luminescence dating of desert dune sediments has generated many hundreds of ages, many used in reconstructions of Quaternary environmental changes, others in attempts to elucidate dune processes. Environmental and climatic interpretations of these records have proved problematic and it remains challenging to test hypotheses of the systematic response of dunefields to changes in external forcing in the past and to make predictions of the future. We use a method that quantifies dune sediment accumulation to interpret dune luminescence age datasets, rather than simply using the ages themselves as proxies of change. The Accumulation Intensity method allows periods of dune sediment accumulation, here over the timescale 102–105 years, to be identified from compilations of dated sand sea stratigraphic sequences. We apply this approach to two of the largest dune age datasets, from southern Africa and Australia, testing whether or not dunefield accumulation has co‐varied in the Late Quaternary and whether systematic relationships to external drivers at global, hemispheric, regional and local scales can be identified. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract Peridotite xenoliths from the subarc mantle, which have been rarely documented, are described from Iraya volcano of the Luzon arc, the Philippines, and are discussed in the context of wedge-mantle processes. They are mainly harzburgite, with subordinate dunite, and show various textures from weakly porphyroclastic (C-type) to extremely fine-grained equigranular (F-type). Textural characteristics indicate a transition from the former to the latter by recrystallization. The F-type peridotite has inclusion-rich fine-grained olivine and radially aggregated orthopyroxene, being quite different in texture from ordinary mantle-derived peridotites previously documented. Despite their strong textural contrast, the two types do not show any systematic difference in modal composition. The harzburgite of C-type has ordinary mantle peridotite mineralogy; olivine is mostly Fo91–92 and chromian spinel mostly has Cr#s (= Cr/[Cr + Al] atomic ratios) from 0.3 to 0.6. Olivine is slightly more Fe-rich (Fo89–91) and spinel is more enriched in Cr (the Cr#, 0.4–0.8) and Fe3+ in F-type peridotites than in C-type harzburgite. Orthopyroxene in F-type peridotites is relatively low in CaO (<1 wt%), Al2O3 (<2 wt%) and Cr2O3 (<0.4 wt%). The F-type peridotite was possibly formed from the C-type one by recrystallization including local dissolution and precipitation of orthopyroxene assisted by fluid (or melt) of subduction origin. Textural characteristics, however, indicate a deserpentinization origin from abyssal serpentinite of which protolith was a C-type peridotite. In this scenario the initial abyssal serpentinite was possibly dehydrated due to an initiation of magmatic activity beneath an incipient oceanic arc like Batan Island. The F-type peridotite is characteristic of the upper mantle of island arc, especially of incipient arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号