首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of radio observations for ten kinetically dominated quasars are presented. The observations have been performed at 3.5 cm with the RTF-32 radio telescopes at the Zelenchukskaya and Badary observatories of the Institute of Applied Astronomy of the Russian Academy of Sciences. The kinetic power of the relativistic jets and the spins of the supermassive black holes in these objects have been determined from radio luminosity measurements. The rotation of the black hole in these objects is shown to be retrograde with respect to the Keplerian rotation in the accretion disk in the case of an approximate equality between the magnetic and gas pressures near the black hole event horizon.  相似文献   

2.
本文列举了云南天文台四波段太阳射电实测中得到的几种干扰实例及确认的太阳快速信号,在认识到太阳射电和干扰信号十分相似的基础上,探讨如何识别真伪信号问题。  相似文献   

3.
The phenomena observed at the Sun have a variety of unique radio signatures that can be used to diagnose the processes in the solar atmosphere. The insights provided by radio observations are further enhanced when they are combined with observations from space-based telescopes. This Topical collection demonstrates the power of combination methodology at work and provides new results on i) type I solar radio bursts and thermal emission to study active regions; ii) type II and IV bursts to better understand the structure of coronal mass ejections; and iii) non-thermal gyro-synchrotron and/or type III bursts to improve the characterisation of particle acceleration in solar flares. The ongoing improvements in time, frequency, and spatial resolutions of ground-based telescopes reveal new levels in the complexity of solar phenomena and pose new questions.  相似文献   

4.
We present a new system of two circular polarization solar radio telescopes, POEMAS, for observations of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right- and left-hand polarizations at these high frequencies. The two frequencies were chosen so as to bridge the gap at radio frequencies between 20 and 200 GHz of solar flare spectra. The telescopes, installed at CASLEO Observatory (Argentina), observe the full disk of the Sun with a half power beam width of 1.4°, a time resolution of 10 ms at both frequencies, a sensitivity of 2?–?4 K that corresponds to 4 and 20 solar flux unit (=104 Jy), considering aperture efficiencies of 50±5 % and 75±8 % at 45 and 90 GHz, respectively. The telescope system saw first light in November 2011 and is satisfactorily operating daily since then. A few flares were observed and are presented here. The millimeter spectra of some flares are seen to rise toward higher frequencies, indicating the presence of a new spectral component distinct from the microwave one.  相似文献   

5.
The results of observations of the quasar J0530+1331 (B0528+134) with the radio telescopes RATAN-600 at frequencies of 4.6, 8.2, 11.2, 21.7 GHz and RT-32 at the Zelenchukskaya and Badary observatories of the Quasar network of the Institute of Applied Astronomy, the Russian Academy of Sciences, at frequencies of 4.84 and 8.57 GHz in 2014–2015 are presented. A strong variability on a timescale of 20 days at 4.6–11.2 GHz has been detected over three months of daily RATAN-600 observations; the variability indices are V = dS/〈S〉; = 0.65?0.39. The spectrum of the variable component is falling toward high frequencies with an index α = ?0.76. The structure and autocorrelation functions at 4.6 GHz show an additional process on a timescale of 7 days. No delay of the main process has been detected between 11.2 and 8.2 GHz; the delay between 8.2 and 4.6 GHz does not exceed two days. The most likely cause of the observed variability is the scattering by inhomogeneities of the interstellar medium. The variability has been obtained at theminimum activity phase of the source. The intraday variability (IDV) has been searched for at both RT-32 telescopes since April 2014. Out of 38 successful observing sessions for the source, only three have shown a variability on a timescale of four hours or more at a significance level no higher than 0.1%. This confirms our conclusion drawn from the previous IDV measurements for other sources that the IDV is observed mainly at the maximum phases of long-term variability of the sources.  相似文献   

6.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   

7.
The multi-antenna scintillation method of measuring the solar-wind velocity has been very effective, particularly near the Sun and at high heliographic latitudes where direct measurements are rare or non-existent. However, scintillation observations inherently involve an LOS integration. Several methods have been used to deal with this problem, but they all require the basic assumption that contributions from different parts of the LOS add linearly. This assumption is valid for weak scintillations where the Born approximation holds, but it is not correct for strong scintillations. In this article we compare simultaneous observations of the same radio source, and therefore the same solar wind, at radio wavelengths of 32 cm and 92 cm. The 32-cm observations at the European Incoherent Scatter Radar (EISCAT) were made in weak-scattering and those at 92 cm at the Solar-Terrestrial Environment Laboratory (STEL) were made in strong-scattering mode. The results showed no significant bias in velocity caused by strong scattering, confirming that the LOS inversion techniques can be extended into the strong-scattering regime.  相似文献   

8.
The SPIRIT complex onboard the CORONAS-F satellite has routinely imaged the Sun in the 171, 175, 195, 284, and 304 Å spectral bands since August 2001. The complex incorporates two telescopes. The Ritchey-Chretien telescope operates in the 171, 195, 284, and 304 Å bands and has an objective similar to that of the SOHO/EIT instrument. The Herschel telescope obtains solar images synchronously in the 175 and 304 Å bands with two multilayer-coated parabolic mirrors. The SPIRIT program includes synoptic observations, studies of the dynamics of various structures on the solar disk and in the corona up to 5 solar radii, and coordinated observations with other spaceborne and ground-based telescopes. In particular, in the period 2002–2003, synoptic observations with the SPIRIT Ritchey-Chretien telescope were coordinated with regular 6-hour SOHO/EIT observations. Since June 2003, when EIT data were temporarily absent (SOHO keyholes), the SPIRIT telescope has performed synoptic observations at a wavelength of 175 A. These data were used by the Solar Influence Data Analysis Center (SIDC) at the Royal Observatory of Belgium for an early space weather forecast. We analyze the photometric and spectral parameters of the SPIRIT and EIT instruments and compare the integrated (over the solar disk) EUV fluxes using solar images obtained with these instruments during the CORONAS-F flight from August 2001 through December 2003.  相似文献   

9.
Wülser  J.-P.  Hudson  H. S.  Nishio  M.  Kosugi  T.  Masuda  S.  Morrison  M. 《Solar physics》1998,180(1-2):131-156
The Yohkoh solar X-ray observatory carries two telescopes that require coalignment at a level better than the minimum pixel size of 2_45. This coalignment is needed both internally within Yohkoh and for many scientific applications involving data from ground-based radio and optical observatories. We describe the methods successfully developed for this purpose and now incorporated in the Yohkoh software. Soft X-ray observations of the 1993 transit of Mercury across the solar disk provided key information for the calibration of the coalignment procedures.  相似文献   

10.
Radio observation is one of important methods in solar physics and space science. Sometimes, it is almost the sole approach to observe the physical processes such as the acceleration, emission, and propagation of non-thermal energetic particles, etc. So far, more than 100 solar radio telescopes have been built in the world, including solar radiometers, dynamic spectrometers, and radioheliographs. Some of them have been closed after the fulfillment of their primary scientific objectives, or for their malfunctions, and thus replaced by other advanced instruments. At the same time, based on some new technologies and scientific ideas, various kinds of new and much more complicated solar radio telescopes are being constructed by solar radio astronomers and space scientists, such as the American E-OVSA and the solar radio observing system under the framework of Chinese Meridian Project II, etc. When we plan to develop a new solar radio telescope, it is crucial to design the most suitable technical parameters, e.g., the observing frequency range and bandwidth, temporal resolution, frequency resolution, spatial resolution, polarization degree, and dynamic range. Then, how do we select a rational set of these parameters? The long-term observation and study revealed that a large strong solar radio burst is frequently composed of a series of small bursts with different time scales. Among them, the radio spike burst is the smallest one with the shortest lifetime, the narrowest bandwidth, and the smallest source region. Solar radio spikes are considered to be related to a single magnetic energy release process, and can be regarded as an elementary burst in solar flares. It is a basic requirement for the new solar radio telescope to observe and discriminate these solar radio spike bursts, even though the temporal and spatial scales of radio spike bursts actually vary with the observing frequency. This paper presents the scaling laws of the lifetime and bandwidth of solar radio spike bursts with respect to the observing frequency, which provide some constraints for the new solar radio telescopes, and help us to select the rational telescope parameters. Besides, we propose a spectrum-image combination mode as the best observation mode for the next-generation solar radio telescopes with high temporal, spectral, and spatial resolutions, which may have an important significance for revealing the physical essence of the various non-thermal processes in violent solar eruptions.  相似文献   

11.
Radio astronomy studies of the solar atmosphere possess a very important, not duplicated by other methods, place in the study of solar activity at all stages—from the birth of an active region until its collapse. A significant progress in these studies can be achieved in the implementation of new technical possibilities, such as an increase in the sensitivity of radio telescopes, a detailed spectral analysis over a wide frequency range, high temporal resolution and a broad coverage range in time. We report about the implementation of regular observations with a new spectral and polarization high-resolution system SPHRS, installed at the radio telescope RATAN-600.We describe the concept of the new system and the methods of its implementation.  相似文献   

12.
Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.  相似文献   

13.
An overview of the results of the search for small solar transient events, in association with muon enhancements (deficits) registered at ground-level by the Tupi muon telescopes, is presented. Among the events, there are three interplanetary shocks and two solar flares of small scale whose X-ray emission flux is much smaller than 10???5 W m?2 at 1 AU (GOES-Tupi connection). Two of the interplanetary shocks are cataloged as corotating interaction region and the third shock is due to the passage of a CME (coronal mass ejection) ejecta (ACE and SOHO-Tupi connection) in the Earth’s proximities. In most cases, the particles excess (deficit) coming from these events have only been observed with spacecraft instruments. However, the Tupi telescopes are located at sea level and within the South Atlantic Anomaly (SAA), a region where the shielding effect of the magnetosphere is not perfectly spherical and shows a ‘dip’. This fact enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles (≥?0.1 GV). Muon excesses (deficits) with significances above 4σ have been found. These events observed at ground admit a temporal correlation with solar transient events observed by spacecrafts, which suggests strongly a real connection between them. Details of these observations are reported.  相似文献   

14.
IPS observations with the Big Scanning Array of Lebedev Physical Institute (BSA LPI) radio telescope at the frequency 111 MHz have been monitored since 2006. All the sources, about several hundred daily, with a scintillating flux greater than 0.2 Jy are recorded for 24 hours in the 16 beams of the radio telescope covering a sky strip of 8° declination width. We present some results of IPS observations for the recent period of low solar activity considering a statistical ensemble of scintillating radio sources. The dependences of the averaged over ensemble scintillation index on heliocentric distance are considerably weaker than the dependence expected for a spherically symmetric geometry. The difference is especially pronounced in the year 2008 during the very deep solar activity minimum period. These features are explained by the influence of the heliospheric current sheet that is seen as a strong concentration of turbulent solar wind plasma aligned with the solar equatorial plane. A local maximum of the scintillation index is found in the anti-solar direction. Future prospects of IPS observations using BSA LPI are briefly discussed.  相似文献   

15.
Rapid developments in the techniques of interferometry at millimeter wavelengths now permit the use of telescope arrays similar to the Very Large Array at microwave wavelengths. These new arrays represent improvements of orders of magnitude in the spatial resolution and sensitivity of millimeter observations of the Sun, and will allow us to map the solar chromosphere at high spatial resolution and to study solar radio burst sources at millimeter wavelengths with high spatial and temporal resolution. Here we discuss the emission mechanisms at millimeter wavelengths and the phenomena which we expect will be the focus of such studies. We show that the flare observations study the most energetic electrons produced in solar flares, and can be used to constrain models for electron acceleration. We discuss the advantages and disadvantages of millimeter interferometry, and in particular focus on the use of and techniques for arrays of small numbers of telescopes.Paper presented at the 4th CESRA Workshop in Ouranopolis (Greece) 1991.  相似文献   

16.
The large-scale stream structure of the solar wind flow is studied in the main acceleration zone from 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomical observations of radio wave scattering using the large radio telescopes of the Lebedev Physical Institute; dual-frequency Doppler solar wind speed measurements from the Ulysses Solar Corona Experiment during the spacecraft's two solar conjunctions in summer 1991 and winter 1995; solar magnetic field strength and configuration computed from Wilcox Solar Observatory data. Both the experimental data on the position of the transonic region of the solar wind flow and the solar wind speed estimates were used as parameters reflecting the intensity of the solar wind acceleration process. Correlation studies of these data with the magnetic field strength in the solar corona revealed several types of solar wind flow differing in their velocities and the location of their primary acceleration region.  相似文献   

17.
Jupiter radio emission is known to be the most powerful nonthermal planetary radiation. In recent years specifically space-based observations allow us to permanently cover a large frequency band(from 100 kHz up to 40 MHz combined with ground-based telescopes)of the Jovian spectrum. The Plasma and Wave Science experiment onboard Galileo enables the observation of Jovian kilometric and hectometric emissions; Wind/WAVES and ground-based telescopes (mainly Decametric Array in Nancay, France, and UTR-2 in Kharkov, Ukraine) cover also hectometric and mainly decametric emissions. Specific geometrical configurations between Cassini approaching Jupiter and Wind spacecraft orbiting Earth, with Galileo orbiting Jupiter and Wind, in combination with ground-based observations provide a new approach to perform Jovian radio tomography. The tomography technique is used to analyze ray paths of Jovian radio emission observed in different directions (e.g. solar and anti-solar direction) and for different declination of Earth. The developments of Jovian radio emission tomography in recent years treated refraction effects and its connection to the local magnetic field in the radio source as well as the radio wave propagation through the Io torus and the terrestrial ionosphere. Most recently ground-based multi-site and simultaneous Jupiter decametric radio observations by means of digital spectropolarimeter and waveform receiver provide the basis of a new data analysis treatment. The above addressed topics are without exemption deeply connected to the plasma structures the radio waves are generated in and propagating through. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The result of the search for, and the observations of radio emission from two groups of isolated neutron stars: AXP 1E 2259+586 and XDINS 1RXS J1308.6+212708 and 1RXS J214303.7+065419 are reported. The observations were carried out on two sensitive transit radio telescopes at a few frequencies in the range 42–112 MHz. The flux densities, mean pulse profiles, as well as, the estimation of the dispersion measures, distances and integrated radio luminosities of all objects are presented. Comparison with X-ray data shows large differences in the mean pulse widths and luminosities.   相似文献   

19.
The problem of phaseless aperture synthesis is of current interest in phase-unstable VLBI with a small number of elements when either the use of closure phases is not possible (a two-element interferometer) or their quality and number are not enough for acceptable image reconstruction by standard adaptive calibration methods. Therefore, we discuss the problem of unique image reconstruction only from the spectrum magnitude of a source. We suggest an efficient method for phaseless VLBI mapping of compact extragalactic radio sources. This method is based on the reconstruction of the spectrum magnitude for a source on the entire UV plane from the measured visibility magnitude on a limited set of points and the reconstruction of the sought-for image of the source by Fienup's method from the spectrum magnitude reconstructed at the first stage. We present the results of our mapping of the extragalactic radio source 2200+420 using astrometric and geodetic observations on a global VLBI array. Particular attention is given to studying the capabilities of a two-element interferometer in connection with the putting into operation of a Russian-made radio interferometer based on Quasar RT-32 radio telescopes.  相似文献   

20.
Solar observations have been done with telescopes since their invention—already Galileo looked at the Sun. Despite the Sun’s unusual brightness, telescopes which specialize in solar observations are fairly recent, dating from the late nineteenth century onwards. Today, many solar telescopes have rather little in common with nighttime telescopes. They are adapted to high light flux, a limited range of declination, and to the specifications of solar spectrographs and polarimeters. This paper presents the history of the modern optical solar telescope on the ground and in space, the accompanying evolution of scientific capabilities, and a brief outlook into the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号