首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper the situation above the large active region which passed across the solar disc between February 17 and 28, 1969 is considered. Five dynamical spectra of type II radio bursts registered by CSIRO and by Weissenau Observatory were used. After the elaboration of dynamical spectra, the parameters of shock waves and the values of magnetic field in corona were determined. The magnetic field was obtained using two methods. In the first method the connection between the velocity of shock front and the velocity of the Alfvén waves was used. In the second method the dependence of the frequency split upon the value of the magnetic field was applied.  相似文献   

2.
K. Murawski 《Solar physics》1992,139(2):279-297
The nonlinear propagation of the Alfvén and magnetosonic waves in the solar corona is investigated in terms of model equations. Due to viscous effects taken into account the propagation of the fast wave itself is governed by Burgers type equations possessing both expansion and compression shock solutions. Numerical simulations show that both parallely and perpendicularly propagating fast waves can steepen into shocks if their amplitudes are in excess of some sizeable fraction of the Alfvén velocity. However, if the magnetic field changes linearly in the perpendicular direction, then formation of perpendicular shocks can be hindered. The Alfvén waves exhibit a tendency to drive both the slow and fast magnetosonic waves whose propagation is described by linearized Boussinesq type equations with ponderomotive terms due to the Alfvén wave. The limits of the slow and fast waves are investigated.  相似文献   

3.
The analysis of observational data has shown that the duration of a pulse train in type IV radio bursts decreases with increasing hardness of the spectrum of high-energy protons and increases with decreasing proton fluxes from the Sun. It is shown that such a correlation corresponds to a magnetohydrodynamic (MHD) model of pulsations and is inexplicacable within the framework of a nonlinear periodical regime of plasma instabilities. The pulse train duration is determined by proton pitch-angle diffusion caused by Alfvén waves in coronal magnetic loops. A method of predicting solar proton hardness and proton fluxes using type IV radio burst pulsations is proposed.  相似文献   

4.
A consistent account of plasma turbulence in magnetohydrodynamics equations describing transport processes across the magnetic field is presented. The structure of the perpendicular shock wave generated in the solar atmosphere, as a result of either local disturbance of the magnetic field or dense plasma cloud motion with a frozen-in magnetic field, has been investigated. The region of parameters in the solar atmosphere at which the electron-ion relative drift velocity u exceeds the electron thermal velocity V eand generation of radio emission becomes possible, has been determined. The plasma turbulence inside the front has been shown, under conditions of solar corona, not to cause the oscillation structure of shock front to break down. Under chromospheric conditions, the shock profile is aperiodical. Then, the condition u > Vecan be satisfied and shock waves having an Alfvén Mach number M which exceeds the critical value M c 3.3 for aperiodical shock waves can exist (Eselevich et al., 1971a). Arguments are given in favour of the fact that perpendicular shock waves are generated in the Sun's atmosphere when dense plasma clouds, with a frozen-in magnetic field, are expanded.  相似文献   

5.
In this paper a unique 2.3–4.2 GHz radio spectrum of the flare impulsive phase, showing fast positively drifting bursts superimposed on a slowly negatively drifting burst, is presented. Analyzing this radio spectrum it was found that the flare started somewhere near the transition region, where upward propagating MHD waves were generated during the whole impulsive phase. Moreover, it was found that behind a front of these ascending MHD waves the downward propagating electron beams, which bombarded dense layers of the solar atmosphere, were accelerated. It seems that, simultaneously with the increase of beam bombardment intensity, the intensity of MHD waves was increasing and thus the MHD shock wave generation and the electron beam acceleration and bombardment formed a self-consistently amplifying flare process. At higher coronal heights this process was followed by a type II radio burst, i.e. by the MHD flare shock. To verify this concept, the numerical modeling of the shock-wave generation and propagation in space from a flare site near the transition region up to 3 solar radii was made. Comparing the thermal and magnetic field disturbances, it was found that those of magnetic origin are more relevant in this case. Combining the results of interpretation and numerical simulation, a model of the February 27, 1992 flare is suggested and new aspects of this model are discussed.  相似文献   

6.
Using the observed data for wide-band type IV solar radio bursts, the onset time differences between the microwave and metric frequencies and the peak flux intensities of the metric component are analyzed as a function of the longitudinal position of the associated flares on the solar disk. It is shown that this time difference is dependent on the position of the associated flare and that the peak flux intensity reaches maximum when a flare occurs in the region 10 to 40 ° west of the central meridian of the solar disk. These results are explained by taking into account the eastward expansion of magnetic bottles which trap mildly relativistic electrons responsible for type IV bursts. Discussion is given on the relation between these magnetic bottles and shock waves which excite type II radio bursts.NASA Associate with University of Maryland, Astronomy Program.  相似文献   

7.
Analyzing 205 radio bursts observed by the Ondejov radiospectrograph in the 1–4 GHz frequency range during 1992 and 1993, we found 6 examples of type II-like radio bursts coinciding with impulsive phases of solar flares. These bursts were interpreted as radio manifestations of MHD (shock) waves generated during impulsive phases of flares in the vicinity of the transition region. Assuming a magnetic-field perturbation origin of these waves, we studied pinch processes in the current sheet near the transition region. In the 2-D MHD numerical model of this current sheet we demonstrated that 2-D pinch processes induced by radiative losses can trigger the impulsive phase of some flares and so generate the observed high-frequency type II-like radio bursts.  相似文献   

8.
The interaction of traveling fast solar shock waves with other fast shock waves generated previously is considered in terms of magnetohydrodynamics for various solar wind parameters. The shocks are not piston ones and move freely in the flow. The magnetic structure in the interplanetary magnetic field emerging after the shock interaction is shown to correspond to the well-known magnetic configuration commonly observed on spacecraft or the classical Hundhausen R model. A head-on collision of solar shock waves with the boundary of a magnetic cloud is considered. It is pointed out that a slow shockwave refracted into the magnetic cloud can appear at an oblique collision of the shock with the cloud boundary. The results clarify our understanding of the available spacecraft data.  相似文献   

9.
The association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H, the green coronal line, and white-light coronagraphs is examined. Rather than identifying fast-moving optical coronal transients with outward-travelling shock waves that generate type II radio bursts, as has been suggested in some earlier papers, we suggest that, for the most part, such transients should probably be identified with piston-type phenomena well behind the shock. We then discuss a general model, consisting of three main velocity regimes, in which we relate type II radio bursts and coronal shocks to optically-observed ejecta.  相似文献   

10.
B. Vršnak  S. Lulić 《Solar physics》2000,196(1):157-180
The formation and evolution of a large amplitude MHD perturbation propagating perpendicular to the magnetic field in a perfectly conducting low plasma is studied. The perturbation is generated by an abrupt expansion of the source region. Explicit expressions for the time and the distance needed for the transformation of the perturbation's leading edge into a shock wave are derived. The results are applied to coronal conditions and the dynamic spectra of the radio emission excited by the shock are synthesized, reproducing metric and kilometric type II bursts. The features corresponding to the metric type II burst precursor and the moving type IV burst in the case of kilometric type II bursts are identified. A specific radio signature that is sometimes observed at the onset of a metric type II burst is found to appear immediately before the shock wave formation due to the associated growth of the magnetic field gradient. Time delays and starting frequencies of bursts' onsets are calculated and presented as a function of the impulsiveness of the source-region expansion, using different values of the ambient Alfvén velocity and various time profiles of the expansion velocity. The results are confronted with the observations of metric and kilometric type II solar radio bursts.  相似文献   

11.
Several recent phenomena with zebra patterns (ZPs) and fiber bursts on the dynamic spectra of solar type IV radio bursts have been complexly analyzed using all available ground-based and satellite data (SOHO, TRACE, RHESSI). ZPs and fiber bursts were observed at frequencies of 50–3800 MHz. The main relative spectral parameters and the degree of circular polarization of ZPs and fiber bursts are almost identical. The fine structure was observed in powerful and weak phenomena (and was more impressive in weak phenomena) during impulsive and decline phases at instants of recurring continuum bursts. The shape of the fine structure depends on that of the magnetic loops in a radio source, the type of fast particle acceleration (impulsive or prolonged), and the presence of shock waves and coronal mass ejections. Several new effects of the interaction between zebra stripes and fiber bursts have been detected. Specifically, up to 40 fiber bursts with different frequency ranges were simultaneously observed in the frequency range 1–2 GHz against a background of sudden absorptions. It has been indicated that different effects in the ZP stripe behavior can be explained within the scope of the model with whistlers, if the quasi-linear diffusion of fast particles on whistlers (which deforms the particle velocity distribution function) is taken into account.  相似文献   

12.
We investigate the proper method for mathematically simulating the formation of an interplanetary disturbance (IPD) in the subsonic, sub-Alfvénic region near the solar surface within the constraints of one-dimensional hydrodynamic and magnetohydrodynamic (MHD) analyses. We then numerically simulate the subsequent propagation of the IPD through the solar wind critical points in the equatorial plane to the outer corona. We show that, if the IPD is initiated outside the critical points, it always contains both a forward and reverse shock (a shock pair). This result contrasts with observations indicating that shock pairs at 1 AU which can be associated with solar events are rare occurrences in the solar wind. On the other hand, IPDs initiated inside the critical points contain only a forward shock at the leading edge. When the magnetic field is included in the simulation and the IPD is originated inside the critical points, the IPD contains a forward shock at its leading edge followed by large-amplitude, nonlinear, MHD waves which are convected outward by the solar wind. Unlike shock pairs, MHD waves are often observed in the solar wind. Hence, we conclude that physically realistic studies of the propagation of IPD which are assumed to originate near the solar surface must (1) initiate the IPD inside the critical points and (2) include the magnetic field. Although this conclusion is based on a one-dimensional analysis, we speculate that it would be equally valid in multi-dimensions.  相似文献   

13.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   

14.
The possible relation between type I noise active regions and the polarity distribution of the interplanetary magnetic field is examined for the period from 13 March to 21 August, 1968 (Solar Rotation Numbers 1842–1847) by using data from ground-based and satellite observations. In general four type I radio regions appeared during each solar rotation period except for Rotation No. 1842. The number of type I regions is the same as the number of sector boundaries. This result suggests that the configuration of the photospheric magnetic field extending into the interplanetary space may be related to the origin of the type I radio regions. Statistically the passage of the sector boundaries is delayed by approximately 5 days after the central meridian passage of the type I noise regions on the solar disk.The position of the source of the sector boundaries and its relation to the type I radio regions are investigated by taking into account the mean bulk velocity of solar winds as observed by space probes. A model of the large-scale structure of type I radio regions and their relation to the sector structure of the magnetic field as observed in the interplanetary space is briefly discussed.NASA Research Associate at the University of Maryland.  相似文献   

15.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.  相似文献   

16.
We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar radio emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.  相似文献   

17.
A mechanism is proposed for the generation of zebra-patterns in solar radio bursts due to the excitation of nonlinear ion-sound waves in a nonisothermal plasma and their scattering on fast particles. The appearance of the ion sound at the fundamental frequency can take place in the interaction of two opposing Alfvén or whistler waves. The presence of quasi-equidistant stripes in electro-magnetic radiation is ultimately determined by weak ion-sound dispersion resulting in the formation of higher harmonics.  相似文献   

18.
We have modeled the solar coronal active loop heating by discrete Alfvén waves. Discrete Alfvén waves (DAW) are a new class of Alfvén waves which can be described by the two-fluid model with finite ion-cyclotron frequency, or the MHD model with plasma current along the magnetic field line as shown by Appert, Vaclavik, and Villar (1984). We have modeled the coronal loop as a semi-toroidal plasma with the major toroidal radius much larger than the plasma radius. We have shown that the absorption of discrete Alfvén waves by the plasma through viscosity can account for at least 30% of the coronal heating rate density of 10–4 J m–3 s–1.  相似文献   

19.
Judit Pap 《Solar physics》1987,109(2):373-386
A strong correlation was found between the dips in the total solar irradiance and the peaks in the active sunspot areas as well as in the 260 MHz coronal radio flux. This connection might indicate that Alfvén-waves, generated during the interaction of the magnetic fields of the active sunspot groups with the convection, are able to transport away part of the missing energy in the solar constant decreases. These waves can heat the solar corona above the sunspot groups. Another part of the missing energy could be re-radiated later, for example during the decay of the active regions.  相似文献   

20.
Loop models of solar flares: Revisions and comparisons   总被引:1,自引:0,他引:1  
D. S. Spicer 《Solar physics》1981,70(1):149-172
Due to developments in solar flare observations which appear to show that a particular class of solar flares result from instabilities occurring in magnetic loops we re-examine the Alfvén-Carlqvist flare model to show that it is workable and we update the Spicer loop model of a flare. It is noted that the Alfvén-Carlqvist model of necessity requires an external current driver which must maintain the current driven instability at marginal stability during the duration of the flare. In addition, it is argued that if the Alfvén-Carlqvist model is to work the current density must rise in a time shorter than an MHD or resistive tearing mode time scale. Otherwise, the dominant flare mechanism must be an ideal MHD or tearing type instability. Further, the distinctions between the two models are highlighted and a new hybrid model of the Alfvén-Carlqvist and Spicer models is introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号