首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the results of an investigation into the dispersion values, expressed in terms of limit‐state spectral accelerations, which could be used for the pushover‐based risk assessment of low‐height to mid‐height reinforced concrete frames and cantilever walls. The results of an extensive parametric study of a portfolio of test structures indicated that the dispersion values due to record‐to‐record variability and modelling uncertainty (βLS,RU) are within the range from 0.3 to 0.55 for the near collapse limit state, and between 0.35 and 0.60 for the collapse limit state. The dispersions βLS,RU proposed for the code‐conforming and the majority of old (non code‐conforming) frames are in between these values. On the other hand, the dispersions proposed for the old frames with a soft storey and an invariant plastic mechanism, and for the code‐conforming cantilever walls, are at the lower and upper bounds of the presented values, respectively. The structural parameters that influence these dispersions were identified, and the influence of different ground motion sets, and of the models used for the calculation of the rotation capacities of the columns, on the calculated fragility parameters was examined and quantified. The proposed dispersion values were employed in a practice‐oriented pushover‐based method for the estimation of failure probability for eight selected examples. The pushover‐based risk assessment method, although extremely simple and economical when compared with more rigorous probabilistic methods, was able to predict seismic risk with reasonable accuracy, thus showing it to be a practical tool for engineers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Seismic fragility of lightly reinforced concrete frames with masonry infills is assessed through numerical simulations considering uncertainty in ground motion and building materials. To achieve this aim, a numerical model of the components is developed, a rational approach to proportion and locate individual struts in the equivalent three‐strut model is proposed, and an explicit nonlinear column shear response model accounting for the infill–column interaction and soft‐story mechanism is employed. The proposed numerical model is used to (1) generate probabilistic seismic demand models accounting for a wide range of ground motion intensities with different frequency content and (2) determine limit state models obtained from nonlinear pushover analysis and incremental dynamic analysis. Using the demand and limit state model, fragility curves for the masonry‐infilled frames are developed to investigate the impact of various infill properties on the frame vulnerability. It is observed that the beneficial effect of the masonry infill diminishes at more severe limit states because of the interaction with the boundary frame. In some cases, this effect almost vanishes or switches to an adverse effect beyond a threshold of ground motion intensities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Following several damaging earthquakes in China,research has been devoted to find the causes of the collapse of reinforced concrete(RC) building sand studying the vulnerability of existing buildings.The Chinese Code for Seismic Design of Buildings(CCSDB) has evolved over time,however,there is still reported earthquake induced damage of newly designed RC buildings.Thus,to investigate modern Chinese seismic design code,three low-,mid-and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model(PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center.Finally,the PSDM was used to generate fragility curves for immediate occupancy,significant damage,and collapse prevention damage levels.Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.  相似文献   

6.
基于能力谱法的SSI体系抗震pushover分析方法   总被引:1,自引:0,他引:1  
本文首先经过2次等效将土与结构相互作用的多自由度体系等效为单自由度体系,并给出了修正反应谱和等价能力谱的确定方法,进而提出了基于能力谱法考虑土与结构动力相互作用(SSI)效应的结构体系pushover分析方法(SSIPA);然后对3种不同高度考虑SSI效应的结构体系在5条地震动作用下采用本文提出的方法进行了算例分析,将结果与非线性时程分析的结果进行了比较,研究了本方法的适用性和准确性;最后,与建筑抗震设计规范的设计反应谱相结合,对9层考虑SSI效应的钢结构用本文提出的方法进行了弹塑性地震反应分析,根据我国抗震设计规范的规定进行抗震性能的评估验证了本方法的可行性。  相似文献   

7.
The concept of intensity‐based assessment for risk‐based decision‐making is introduced. It is realized by means of the so‐called 3R method (response analysis, record selection and risk‐based decision‐making), which can be used to check the adequacy of design of a new building or of the strengthening of an existing building by performing conventional pushover analysis and dynamic analysis for only a few ground motions, which are termed characteristic ground motions. Because the objective of the method is not a precise assessment of the seismic risk, a simple decision model for risk acceptability can be introduced. The engineer can decide that the reliability of a no‐collapse requirement is sufficient when collapse is observed in the case of less than half of, for example, seven characteristic ground motions. From the theoretical point of view, it is shown that the accuracy of the method is acceptable if the non‐linear response history analyses are performed at a low percentile of limit‐state intensity, which is also proven by means of several examples of multi‐storey reinforced concrete frame buildings. The 3R method represents a compromise between the exclusive use of either pushover analysis or dynamic analysis and can be easily introduced into building codes provided that its applicability is further investigated (e.g. asymmetric structures and other performance objectives) and that the procedure for the selection of characteristic ground motions is automated and readily available to engineers (www.smartengineering.si).  相似文献   

8.
基于凸集模型的界限pushover分析   总被引:1,自引:0,他引:1  
结构的抗震性能评估中包含许多不确定性因素。当掌握的不确定性信息较少时,概率模型结果是值得怀疑的。本文首先采用双界限凸集模型考虑地面运动加速度峰值和反应谱特征周期的不确定性,并结合我国现行抗震设计规范中的反应谱,求得结构层间剪力的变异区间,在此基础上给出了一种新的界限侧向加载方式;并进一步将凸集理论融于pushover分析过程中,分析了由pushover得到的结构能力的界限变化区间。结果表明本文給出的界限pushover方法能给出性态指标的变化区间,是一种更客观可靠的抗震性能评估方法。  相似文献   

9.
10.
This paper evaluates a recent record selection and scaling procedure of the authors that can determine the probabilistic structural response of buildings behaving either in the elastic or post‐elastic range. This feature marks a significant strength on the procedure as the probabilistic structural response distribution conveys important information on probability‐based damage assessment. The paper presents case studies that show the utilization of the proposed record selection and scaling procedure as a tool for the estimation of damage states and derivation of site‐specific and region‐specific fragility functions. The method can be used to describe exceedance probabilities of damage limits under a certain target hazard level with known annual exceedance rate (via probabilistic seismic hazard assessment). Thus, the resulting fragility models can relate the seismicity of the region (or a site) with the resulting building performance in a more accurate manner. Under this context, this simple and computationally efficient record selection and scaling procedure can be benefitted significantly by probability‐based risk assessment methods that have started to be considered as indispensable for developing robust earthquake loss models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper summarizes the results of an extensive study on the inelastic seismic response of X‐braced steel buildings. More than 100 regular multi‐storey tension‐compression X‐braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record‐to‐record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design‐oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation‐controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
One of the main challenges in earthquake risk mitigation is the assessment of existing buildings not designed according to modern codes and the development of effective techniques to strengthen these structures. Particular attention should be given to RC frame structures with masonry infill panels, as demonstrated by their poor performance in recent earthquakes in Europe. Understanding the seismic behaviour of masonry‐infilled RC frames presents one of the most difficult problems in structural engineering. Analytical tools to evaluate infill–frame interaction and the failure mechanisms need to be further studied. This research intends to develop a simplified macro‐model that takes into account the out‐of‐plane behaviour of the infill panels and the corresponding in‐plane and out‐of‐plane interaction when subjected to seismic loadings. Finally, a vulnerability assessment of an RC building will be performed in order to evaluate the influence of the out‐of‐plane consideration in the building response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Past earthquake experiences indicate that most buildings designed in accordance with modern seismic design codes could survive moderate‐to‐strong earthquakes; however, the financial loss due to repairing cost and the subsequent business interruption can be unacceptable. Designing building structures to meet desired performance targets has become a clear direction in future seismic design practice. As a matter of fact, the performance of buildings is affected by structural as well as non‐structural components, and involves numerous uncertainties. Therefore, appropriate probabilistic approach taking into account structural and non‐structural damages is required. This paper presents a fuzzy–random model for the performance reliability analysis of RC framed structures considering both structural and non‐structural damages. The limit state for each performance level is defined as an interval of inter‐storey drift ratios concerning, respectively, the non‐structural and structural damage with a membership function, while the relative importance of the two aspects is reflected through the use of an appropriate cost function. To illustrate the methodology, herein the non‐structural damage is represented by infill masonry walls. The probabilistic drift limits for RC components and masonry walls from the associated studies are employed to facilitate the demonstration of the proposed model in an example case study. The results are compared with those obtained using classical reliability model based on single‐threshold performance definition. The proposed model provides a good basis for incorporating different aspects into the performance assessment of a building system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The seismic response of non‐ductile reinforced concrete (RC) buildings can be affected by the behaviour of beam‐column joints involved in the failure mechanism, especially in typical existing buildings. Conventional modelling approaches consider only beam and column flexibility, although joints can provide a significant contribution also to the overall frame deformability. In this study, the attention is focused on exterior joints without transverse reinforcement, and a possible approach to their modelling in nonlinear seismic analysis of RC frames is proposed. First, experimental tests performed by the authors are briefly presented, and their results are discussed. Second, these tests, together with other tests with similar features from literature, are employed to calibrate the joint panel deformability contribution in order to reproduce numerically the experimental joint shear stress–strain behaviour under cyclic loading. After a validation phase of this proposal, a numerical investigation of the influence of joints on the seismic behaviour of a case study RC frame – designed for gravity loads only – is performed. The preliminary failure mode classification of the joints within the analysed frame is carried out. Structural models that (i) explicitly include nonlinear behaviour of beam‐column joints exhibiting shear or anchorage failure or (ii) model joints as elements with infinite strength and stiffness are built and their seismic performance are assessed and compared. A probabilistic assessment based on nonlinear dynamic simulations is performed by means of a scaling approach to evaluate the seismic response at different damage states accounting for uncertainties in ground‐motion records. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this report, the capabilities of the adaptively shifted integration (ASI)‐Gauss code in the analysis of the seismic responses of framed structures are verified and validated by comparing the results with detailed numerical simulations performed by the parallel finite element analysis code, E‐Simulator, and with experimental results obtained by E‐Defense. The numerical results obtained by both codes showed good agreement with the experimental results obtained by E‐Defense. Furthermore, seismic waves with unnaturally large magnitudes are applied to a high‐rise building model to demonstrate the ability of the ASI‐Gauss code to analyze the collapse behaviors of building frames. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The paper investigates the degree of accuracy achievable when some non‐linear static procedures based on a pushover analysis are used to evaluate the seismic performance. In order to assess the significance of different sources of errors, three types of structural systems are analysed: (i) single‐degree‐of‐freedom (SDOF) systems with different hysteretic behaviour; (ii) shear‐type multi‐degree‐of‐freedom (MDOF) systems with elastic–perfect plastic (EPP) shear force–interstorey drift relationships; (iii) a steel moment‐resisting frame with rigid joints and EPP moment–curvature relationship. In SDOF systems, the source of approximation comes only from the calibration of the demand spectrum, while in MDOF systems some further errors are introduced by the schematization with an equivalent SDOF system. The non‐linear static procedures are compared with rigorous time‐history analyses carried out by considering ten generated earthquake ground motions compatible with the Eurocode 8 elastic spectra. It was found that SDOF systems with longer periods satisfy the equal displacement approximation regardless of the hysteretic model, while hysteresis loops with smaller energy dissipated indicate lower response for shorter periods. This is the opposite of what predicted by the ATC‐40 capacity spectrum method, which underestimates and overestimates, respectively, the actual response of low‐ and high‐ductility systems. Conversely, the inelastic spectrum method proposed by Vidic, Fajfar and Fischinger leads to the most accurate results for all types of structural systems. The analyses carried out on EPP shear‐type frames point out a large concentration of the ductility demand on some storeys. However, such a concentration markedly reduces when some hardening is accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
基于改进点估计法的结构整体概率抗震能力分析   总被引:2,自引:0,他引:2  
确定能力中位值和能力离差值是结构整体概率抗震能力分析的两个关键问题,文中分析了现有方法存在的缺点。在Zhao-Ono点估计法的基础上,引入基于随机向量边缘概率分布信息的Nataf变换,提出了改进的点估计法。将改进点估计法与Pushover分析相结合,提出了评估结构整体概率抗震能力统计矩的随机Pushover分析方法。以某五层三跨钢筋混凝土框架结构为例,应用本方法,进行结构整体概率抗震能力分析,得到了结构整体抗震能力的易损性曲线。分析表明,所提方法是一种具有较高效率和较好精度的结构整体概率抗震能力的分析方法。  相似文献   

18.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

19.
Over the last two decades, the probabilistic assessment of reinforced concrete (RC) structures under seismic hazard has been developed rapidly. However, little attention has been devoted to the assessment of the seismic reliability of corroded structures. For the life‐cycle assessment of RC structures in a marine environment and earthquake‐prone regions, the effect of corrosion due to airborne chlorides on the seismic capacity needs to be taken into consideration. Also, the effect of the type of corrosive environment on the seismic capacity of RC structures has to be quantified. In this paper, the evaluation of the displacement ductility capacity based on the buckling model of longitudinal rebars in corroded RC bridge piers is established, and a novel computational procedure to integrate the probabilistic hazard associated with airborne chlorides into life‐cycle seismic reliability assessment of these piers is proposed. The seismic demand depends on the results of seismic hazard assessment, whereas the deterioration of seismic capacity depends on the hazard associated with airborne chlorides. In an illustrative example, an RC bridge pier was modeled as single degree of freedom (SDOF). The longitudinal rebars buckling of this pier was considered as the sole limit state when estimating its failure probability. The findings show that the life‐cycle reliability of RC bridge piers depends on both the seismic and airborne chloride hazards, and that the cumulative‐time failure probabilities of RC bridge piers located in seismic zones can be dramatically affected by the effect of airborne chlorides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A setback building has a sudden discontinuity in the frame geometry along the height. This kind of irregularity causes an abrupt discontinuity in stiffness, strength and mass of the building frame. In this study, a total of nineteen mid-rise 9-story steel moment resisting frames with setbacks including the broad range of different geometrical configurations were studied. An eigenvalue analysis was performed to evaluate and scrutinize the dynamic characteristics of setback structures. The effect of geometrical configurations on the seismic responses of setback frames was studied by means of nonlinear response history analysis using a set of far-field ground motion records. Moreover, due to the rapidly increasing use of pushover analysis for the seismic evaluation of structures in recent years, enhanced pushover analyses (EPAs) including the modal pushover analysis, the upper bound pushover analysis, the consecutive modal pushover and the extended N2 methods were implemented as a main part of this study. The findings show that two factors including the location of setback and the degree of setback are of key importance and influence the dynamic characteristics and seismic responses of setback structures. The degree of accuracy of the enhanced pushover analysis methods generally depends on the dynamic characteristics (geometrical configuration) of the setback frames. The largest error in the EPAs in predicting the story drifts generally occurs in a setback frame with a larger amount of the ratio between the effective modal participating mass ratio of the higher modes and that of the first mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号