首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A parameterized stochastic model of near‐fault ground motion in two orthogonal horizontal directions is developed. The major characteristics of recorded near‐fault ground motions are represented. These include near‐fault effects of directivity and fling step; temporal and spectral non‐stationarity; intensity, duration, and frequency content characteristics; directionality of components; and the natural variability of ground motions. Not all near‐fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed model accounts for both pulse‐like and non‐pulse‐like cases. The model is fitted to recorded near‐fault ground motions by matching important characteristics, thus generating an ‘observed’ set of model parameters for different earthquake source and site characteristics. A method to generate and post‐process synthetic motions for specified model parameters is also presented. Synthetic ground motion time series are generated using fitted parameter values. They are compared with corresponding recorded motions to validate the proposed model and simulation procedure. The use of synthetic motions in addition to or in place of recorded motions is desirable in performance‐based earthquake engineering applications, particularly when recorded motions are scarce or when they are unavailable for a specified design scenario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Near‐fault ground motions impose large demands on structures compared to ‘ordinary’ ground motions. Recordings suggest that near‐fault ground motions with ‘forward’ directivity are characterized by a large pulse, which is mostly orientated perpendicular to the fault. This study is intended to provide quantitative knowledge on important response characteristics of elastic and inelastic frame structures subjected to near‐fault ground motions. Generic frame models are used to represent MDOF structures. Near‐fault ground motions are represented by equivalent pulses, which have a comparable effect on structural response, but whose characteristics are defined by a small number of parameters. The results demonstrate that structures with a period longer than the pulse period respond very differently from structures with a shorter period. For the former, early yielding occurs in higher stories but the high ductility demands migrate to the bottom stories as the ground motion becomes more severe. For the latter, the maximum demand always occurs in the bottom stories. Preliminary regression equations are proposed that relate the parameters of the equivalent pulse to magnitude and distance. The equivalent pulse concept is used to estimate the base shear strength required to limit story ductility demands to specific target values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The orientations of ground motions are paramount when the pulse‐like motions and their unfavorable seismic responses are considered. This paper addresses the stochastic modeling and synthesizing of near‐fault impulsive ground motions with forward directivity effect taking the orientation of the strongest pulses into account. First, a statistical parametric analysis of velocity time histories in the orientation of the strongest pulse with a specified magnitude and various fault distances is performed. A new stochastic model is established consisting of a velocity pulse model with random parameters and a stochastic approach to synthesize high‐frequency velocity time history. The high‐frequency velocity history is achieved by integrating a stochastic high‐frequency accelerogram, which is generated via the modified K‐T spectrum of residual acceleration histories and then modulated by the specific envelope function. Next, the associated parameters of pulse model, envelope function, and power spectral density are estimated by the least‐square fitting. Some chosen parameters in the stochastic model of near‐fault motions based on correlation analysis are regarded as random variables, which are validated to follow the normal or lognormal distribution. Moreover, the number theoretical method is suggested to select efficiently representative points, for generating artificial near‐fault impulsive ground motions with the feature of the strongest pulse, which can be used to the seismic response and reliability analysis of critical structures conveniently. Finally, the simulated ground motions demonstrate that the synthetic ground motions generated by the proposed stochastic model can represent the impulsive characteristic of near‐fault ground motions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A procedure to generate horizontal pairs of synthetic near‐fault ground motion components for specified earthquake source and site characteristics is presented. Some near‐fault ground motions contain a forward directivity pulse; others do not, even when the conditions for such a pulse are favorable. The proposed procedure generates pulse‐like and non‐pulse‐like motions in appropriate proportions. We use our recent stochastic models of pulse‐like and non‐pulse‐like near‐fault ground motions that are formulated in terms of physically meaningful parameters. The parameters of these models are fitted to databases of recorded pulse‐like and non‐pulse‐like motions. Using these empirical “observations,” predictive relations are developed for the model parameters in terms of the earthquake source and site characteristics (type of faulting, earthquake magnitude, depth to top of rupture plane, source‐to‐site distance, site characteristics, and directivity parameters). The correlation coefficients between the model parameters are also estimated. For a given earthquake scenario, the probability of occurrence of a directivity pulse is first computed; pulse‐like and non‐pulse‐like motions are then simulated according to the predicted proportions using the empirical predictive models. The resulting time series are realistic and reproduce important features of recorded near‐fault ground motions, including the natural variability. Moreover, the statistics of their elastic response spectra agree with those of the NGA‐West2 dataset, with the additional feature of distinguishing between pulse‐like and non‐pulse‐like cases and between forward and backward directivity scenarios. The synthetic motions can be used in addition to or in place of recorded motions in performance‐based earthquake engineering, particularly when recorded motions are scarce.  相似文献   

6.
This paper focuses on the effects of long‐period pulse of near‐fault ground motions on the structural damage potential. Two sets of near‐fault ground motion records from Chi‐Chi, Taiwan earthquake and Northridge earthquake with and without distinct pulse are selected as the input, and the correlation analysis between 30 non‐structure‐specific intensity measure parameters and maximum inelastic displacements and energy responses (input energy and hysteretic energy) of bilinear single degree of freedom systems are conducted. Based on the frequency characteristic of near‐fault ground motions with remarkable long‐period components, two intensity indices are proposed, namely, the improved effective peak acceleration (IEPA) and improved effective peak velocity (IEPV). In addition a new characteristic period of these ground motions is defined based on IEPA and IEPV. Numerical results illustrate that the intensity measure parameters related to ground acceleration present the best correlation with the seismic responses for rigid systems; the velocity‐related and displacement‐related parameters are better for medium‐frequency systems and flexible systems, respectively. The correlation curves of near‐fault ground motions with velocity pulse differ from those of ground motions without pulse. Moreover, the improved parameters IEPA and IEPV of near‐fault impulsive ground motions enhance the performance of intensity measure of corresponding conventional parameters, i.e. EPA and EPV. The new characteristic period based on IEPA and IEPV can better reflect the frequency content of near‐fault ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The response of a rigid block supported on a horizontally moving foundation through a dry‐friction contact is investigated to near‐fault ground motions. Such motions can be thought of as consisting of a coherent component (‘pulse’) and an incoherent component, which can be described as a band‐limited ‘random noise’. The equation of motion of this strongly nonlinear system is reduced to a normalized form that reveals important parameters of the problem such as the critical acceleration ratio. The response of the sliding block to a set of uniformly processed near‐fault motions, covering a sufficiently wide range of magnitudes, is evaluated numerically for selected discrete values of the acceleration ratio. For each value of the critical acceleration ratio, the numerically computed residual slips are fitted with a Weibull (Gumbel type III) extreme value probability distribution. This allows the establishment of regression equations that describe accurately design sliding curves corresponding to various levels of non‐exceedance probability. The analysis reveals that the coherent component of motion contributes significantly to the response of the sliding block. Furthermore, the relevant acceleration in specifying the critical acceleration ratio is the (normalized) amplitude, αH_pulse, of the pulse and not the (normalized) amplitude of the incoherent component αH. Finally, the incoherent component is described quantitatively in terms of the root‐mean‐square acceleration aRMS, and an attempt is made to understand its influence on the response of the sliding block. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The seismic performance of the Bolu Viaduct in the Duzce, Turkey, earthquake of November 1999 was studied via a non‐linear, time‐history analysis of a multi‐degree of freedom model. The viaduct had a seismic isolation system consisting of yielding‐steel energy dissipation units and sliding pot bearings. The Duzce earthquake caused a surface rupture across the viaduct, which resulted in excessive superstructure movement and widespread failure of the seismic isolation system. The effect of the rupture was modeled by a static, differential ground displacement in the fault‐parallel direction across the rupture. The ground motions used in the analysis contain common near‐fault features including a directivity pulse in the fault‐normal direction and a fling step in the fault‐parallel direction. The analysis used a finite element package capable of modeling the mechanical behavior of the seismic isolation system and focused on the structural response of a 10‐span module of the viaduct. This analysis showed that the displacement of the superstructure relative to the piers exceeded the capacity of the bearings at an early stage of the earthquake, causing damage to the bearings as well as to the energy dissipation units. The analysis also indicated that shear keys, both longitudinal and transverse, played a critical role in preventing collapse of the deck spans. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

9.
Near‐fault ground motions are characterized by long‐period horizontal pulses and high values of the ratio between the peak value of the vertical acceleration, PGAV, and the analogous value of the horizontal acceleration, PGAH, which can become critical for base‐isolated (BI) structures. The objective of the present work is to check the effectiveness of the base isolation of framed buildings when using High‐Damping‐Rubber Bearings (HDRBs), taking into consideration the combined effects of the horizontal and vertical components of near‐fault ground motions. To this end, a numerical investigation is carried out with reference to BI reinforced concrete buildings designed according to the European seismic code (Eurocode 8). The design of the test structures is carried out in a high‐risk region considering (besides the gravity loads) the horizontal seismic loads acting alone or in combination with the vertical ones and assuming different values of the ratio between the vertical and horizontal stiffnesses of the HDRBs. The nonlinear seismic analysis is performed using a step‐by‐step procedure based on a two‐parameter implicit integration scheme and an initial‐stress‐like iterative procedure. At each step of the analysis, plastic conditions are checked at the potential critical sections of the girders (i.e. end sections of the sub‐elements in which a girder is discretized) and columns (i.e. end sections), where a bilinear moment–curvature law is adopted; the effect of the axial load on the ultimate bending moment (M‐N interaction) of the columns is also taken into account. The response of an HDRB is simulated by a model with variable stiffness properties in the horizontal and vertical directions, depending on the axial force and lateral deformation, and linear viscous damping. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Near‐fault ground motions with forward directivity are characterized by a large pulse. This pulse‐like motion may cause a highly non‐uniform distribution of story ductility demands for code‐compliant frame structures, with maximum demands that may considerably exceed the level of code expectations. Strengthening techniques for multi‐story frame structures are explored with the objective of reducing maximum drift demands. One option is to modify the code‐based SRSS distribution of story shear strength over the height by strengthening of the lower stories of the frame. The modified distribution reduces the maximum story ductility demand, particularly for weak and flexible structures. However, this strengthening technique is less effective for stiff structures, and is almost ineffective in cases in which the maximum demand occurs in the upper stories, i.e. strong and flexible structures. As an alternative, the benefits of strengthening frames with elastic and inelastic walls are evaluated. The effects of adding walls that are either fixed or hinged at the base are investigated. It is demonstrated that strengthening with hinged walls is very effective in reducing drift demands for structures with a wide range of periods and at various performance levels. Wall inelastic behavior only slightly reduces the benefits of strengthening with hinged walls.Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
首先讨论了近断层脉冲型地震动的特点,并以台湾集集地震实际脉冲型近震记录为地震动输入,应用含潜在约束策略的序列二次规划算法,对安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构的隔震器参数和上部结构构件截面几何尺寸进行一体化优化设计,然后输入E l Centro(1940)、Taft(1952)地震波对优化后的隔震结构进行地震反应分析。计算结果表明,对考虑脉冲型近断层地震动作用的隔震结构进行参数优化设计后,该隔震结构能同时满足脉冲型和普通非脉冲型近震作用的结构设计需求。  相似文献   

13.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a comprehensive study is carried out to examine the possibility of dynamic instability produced in soil‐structure systems using an ensemble of 50 pulse‐like records. A number of structural models with various vibration periods varying from 0.1 to 2 s are used in this study. The superstructure is simulated as a non‐linear SDOF oscillator with a two‐segment backbone curve having negative post‐yield stiffness. The soil is idealized based on the cone model concept widely used for practical purposes. The results of this investigation demonstrate that as the pulse period increases, the collapse relative lateral strength ratio decreases and probability of dynamic instability enhances. Moreover, soil flexibility makes the system dynamically more unstable, and as the non‐dimensional frequency increases, the collapse relative lateral strength ratio highly reduces. Additionally, the aspect ratio has insignificant effects on the collapse relative lateral strength ratio. Furthermore, comparison of the collapse relative lateral strength ratios resulting from pulse‐like motions with those obtained from studies under non‐pulse‐like motions (Miranda and Akkar; FEMA 440) for fixed‐base conditions shows that high‐velocity pulses exacerbate the dynamic instability problem and decrease the collapse relative lateral strength ratio. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In spite of important differences in structural response to near‐fault and far‐fault ground motions, this paper aims at extending well‐known concepts and results, based on elastic and inelastic response spectra for far‐fault motions, to near‐fault motions. Compared are certain aspects of the response of elastic and inelastic SDF systems to the two types of motions in the context of the acceleration‐, velocity‐, and displacement‐sensitive regions of the response spectrum, leading to the following conclusions. (1) The velocity‐sensitive region for near‐fault motions is much narrower, and the acceleration‐sensitive and displacement‐sensitive regions are much wider, compared to far‐fault motions; the narrower velocity‐sensitive region is shifted to longer periods. (2) Although, for the same ductility factor, near‐fault ground motions impose a larger strength demand than far‐fault motions—both demands expressed as a fraction of their respective elastic demands—the strength reduction factors Ry for the two types of motions are similar over corresponding spectral regions. (3) Similarly, the ratio um/u0 of deformations of inelastic and elastic systems are similar for the two types of motions over corresponding spectral regions. (4) Design equations for Ry (and for um/u0) should explicitly recognize spectral regions so that the same equations apply to various classes of ground motions as long as the appropriate values of Ta, Tb and Tc are used. (5) The Veletsos–Newmark design equations with Ta=0.04 s, Tb=0.35 s, and Tc=0.79 s are equally valid for the fault‐normal component of near‐fault ground motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   

17.
A methodology for the performance‐based seismic risk assessment of classical columns is presented. Despite their apparent instability, classical columns are, in general, earthquake resistant, as proven from the fact that many classical monuments have survived many strong earthquakes over the centuries. Nevertheless, the quantitative assessment of their reliability and the understanding of their dynamic behavior are not easy, because of the fundamental nonlinear character and the sensitivity of their response. In this paper, a seismic risk assessment is performed for a multidrum column using Monte Carlo simulation with synthetic ground motions. The ground motions adopted contain a high‐ and low‐frequency component, combining the stochastic method, and a simple analytical pulse model to simulate the directivity pulse contained in near source ground motions. The deterministic model for the numerical analysis of the system is three‐dimensional and is based on the Discrete Element Method. Fragility curves are produced conditional on magnitude and distance from the fault and also on scalar intensity measures for two engineering demand parameters, one concerning the intensity of the response during the ground shaking and the other the residual deformation of the column. Three performance levels are assigned to each engineering demand parameter. Fragility analysis demonstrated some of the salient features of these spinal systems under near‐fault seismic excitations, as for example, their decreased vulnerability for very strong earthquakes of magnitude 7 or larger. The analysis provides useful results regarding the seismic reliability of classical monuments and decision making during restoration process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This paper demonstrates the effectiveness of utilizing advanced ground motion intensity measures (IMs) to evaluate the seismic performance of a structure subject to near‐source ground motions. Ordinary records are, in addition, utilized to demonstrate the robustness of the advanced IM with respect to record selection and scaling. To perform nonlinear dynamic analyses (NDAs), ground motions need to be selected; as a result, choosing records that are not representative of the site hazard can alter the seismic performance of structures. The median collapse capacity (in terms of IM), for example, can be systematically dictated by including a few aggressive or benign pulse‐like records into the record set used for analyses. In this paper, the elastic‐based IM such as the pseudo‐spectral acceleration (Sa) or a vector of Sa and epsilon has been demonstrated to be deficient to assess the structural responses subject to pulse‐like motions. Using advanced IMs can be, however, more accurate in terms of probabilistic response prediction. Scaling earthquake records using advanced IMs (e.g. inelastic spectral displacement, Sdi, and IM 1I&2E; the latter is for the significant higher‐mode contribution structures) subject to ordinary and/or pulse‐like records is efficient, sufficient, and robust relative to record selection and scaling. As a result, detailed record selection is not necessary, and records with virtually any magnitude, distance, epsilon and pulse period can be selected for NDAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
With the launch of the high‐speed train project in California, the seismic risk is a crucial concern to the stakeholders. To investigate the seismic behavior of future California High‐Speed Rail (CHSR) bridge structures, a 3D nonlinear finite‐element model of a CHSR prototype bridge is developed. Soil‐structure and track‐structure interactions are accounted for in this comprehensive numerical model used to simulate the seismic response of the bridge and track system. This paper focuses on examining potential benefits and possible drawbacks of the a priori promising application of seismic isolation in CHSR bridges. Nonlinear time history analyses are performed for this prototype bridge subjected to two bidirectional horizontal historical earthquake ground motions each scaled to two different seismic hazard levels. The effect of seismic isolation on the seismic performance of the bridge is investigated through a detailed comparison of the seismic response of the bridge with and without seismic isolation. It is found that seismic isolation significantly reduces the deck acceleration and the force demand in the bridge substructure (i.e., piers and foundations), especially for high‐intensity earthquakes. However, seismic isolation increases the deck displacement (relative to the pile cap) and the stresses in the rails. These findings imply that seismic isolation can be promisingly applied to CHSR bridges with due consideration of balancing its beneficial and detrimental effects through using appropriate isolators design. The optimum seismic isolator properties can be sought by solving a performance‐based optimum seismic design problem using the nonlinear finite‐element model presented herein. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号