共查询到20条相似文献,搜索用时 15 毫秒
1.
An Erratum has been published for this article in Earthquake Engng. Struct. Dyn. 2004; 33:1429. Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the conceptual simplicity of current procedures with invariant force distribution, now common in structural engineering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric‐plan buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion of the effective earthquake forces is determined by non‐linear static analysis using the inertia force distribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each floor level. These ‘modal’ demands due to the first few terms of the modal expansion are then combined by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The MPA estimates of seismic demand for torsionally‐stiff and torsionally‐flexible unsymmetric systems are shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate for a torsionally‐similarly‐stiff unsymmetric‐plan system and the ground motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
The accuracy of the three‐dimensional modal pushover analysis (MPA) procedure in estimating seismic demands for unsymmetric‐plan buildings due to two horizontal components of ground motion, simultaneously, is evaluated. Eight low‐and medium‐rise structures were considered. Four intended to represent older buildings were designed according to the 1985 Uniform Building Code, whereas four other designs intended to represent newer buildings were based on the 2006 International Building Code. The median seismic demands for these buildings to 39 two‐component ground motions, scaled to two intensity levels, were computed by MPA and nonlinear response history analysis (RHA), and then compared. Even for these ground motions that deform the buildings significantly into the inelastic range, MPA offers sufficient degree of accuracy. It is demonstrated that PMPA, a variant of the MPA procedure, for nonlinear systems is almost as accurate as the well‐known standard response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative to nonlinear RHA, whereby seismic demands can be estimated directly from the (elastic) design spectrum. In contrast, the nonlinear static procedure specified in the ASCE/SEI 41‐06 Standard is demonstrated to grossly underestimate seismic demands for some of the unsymmetric‐plan buildings considered. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
The critical parameters that influence the nonlinear seismic response of asymmetric‐plan buildings are identified by evaluating the effects of different asymmetries that may characterize the structure of a building as well as exploring the influence of the ground motion features. First, the main findings reported in the literature on both the linear and nonlinear dynamic response of asymmetric‐plan buildings are presented. The common findings and the conflicting conclusions reached in different investigations are pointed out. Then, the results of comprehensive nonlinear dynamic analyses performed for evaluating the seismic response of systems characterized by different strength and stiffness configurations, representative of a large class of asymmetric‐plan buildings, are reported. Findings from the study indicate that the building response changes when moving from the linear to the nonlinear range, so that the seismic behavior of asymmetric‐plan buildings, apart from the source of asymmetry, can be always classified as irregular. Additionally, it was observed that as the seismic demands cause amplification of system nonlinearity with increasing earthquake intensity, the maximum displacement demand in the different resisting elements tends to be reached with the same deformed configuration of the system. The resultant of the seismic forces producing such a maximum demand is located at the center of resistance and corresponds to the collapse mechanism of the system that provides the maximum lateral strength in the exciting direction of the seismic action. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
Envelope‐based pushover analysis procedure for the approximate seismic response analysis of buildings 下载免费PDF全文
An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
An approximate method for linear analysis of asymmetric‐plan, multistorey buildings is specialized for a single‐storey, base‐isolated structure. To find the mode shapes of the torsionally coupled system, the Rayleigh–Ritz procedure is applied using the torsionally uncoupled modes as Ritz vectors. This approach reduces to analysis of two single‐storey systems, each with vibration properties and eccentricities (labelled ‘effective eccentricities’) similar to corresponding properties of the isolation system or the fixed‐base structure. With certain assumptions, the vibration properties of the coupled system can be expressed explicitly in terms of these single‐storey system properties. Three different methods are developed: the first is a direct application of the Rayleigh–Ritz procedure; the second and third use simplifications for the effective eccentricities, assuming a relatively stiff superstructure. The accuracy of these proposed methods and the rigid structure method in determining responses are assessed for a range of system parameters including eccentricity and structure flexibility. For a subset of systems with equal isolation and structural eccentricities, two of the methods are exact and the third is sufficiently accurate; all three are preferred to the rigid structure method. For systems with zero isolation eccentricity, however, all approximate methods considered are inconsistent and should be applied with caution, only to systems with small structural eccentricities or stiff structures. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
6.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
The mid‐story isolation design method is recently gaining popularity for the seismic protective design of buildings located in the areas of high population. In a mid‐story isolated building, the isolation system is incorporated into the mid‐story rather than the base of the building. In this paper, the dynamic characteristics and seismic responses of mid‐story isolated buildings are investigated using a simplified three‐lumped‐mass structural model for which equivalent linear properties are formulated. From the parametric study, it is found that the nominal frequencies of the superstructure and the substructure, respectively, above and below the isolation system have significant influences on the isolation frequency and equivalent damping ratio of a mid‐story isolated building. Moreover, the mass and stiffness of the substructure are of greater significance than the superstructure in affecting the dynamic characteristics of the isolated building. Besides, based on the response spectrum analysis, it is noted that the higher mode responses may contribute significantly to the story shear force of the substructure. Consequently, the equivalent lateral force procedure of design codes should carefully include the effects of higher modes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
8.
The inelastic seismic torsional response of simple structures is examined by means of shear‐beam type models as well as with plastic hinge idealization of one‐story buildings. Using mean values of ductility factors, obtained for groups of ten earthquake motions, as the basic index of post‐elastic response, the following topics are examined with the shear‐beam type model: mass eccentric versus stiffness eccentric systems, effects of different types of motions and effects of double eccentricities. Subsequently, comparisons are made with results obtained using a more realistic, plastic hinge type model of single‐story reinforced concrete frame buildings designed according to a modern Code. The consequences of designing for different levels of accidental eccentricity are also examined for the aforementioned frame buildings. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
9.
This discussion examines the conclusion reached in the paper that in a single‐story asymmetric‐plan building the maximum displacement demand in the different resisting elements is reached for the same deformation configuration of the system and that the resultant of the seismic forces producing such demand is located at the center of resistance. It is shown that this conclusion is valid only for the particular model studied and cannot be generalized. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
This paper presents a regression model to predict the base displacement responses of biaxial base‐isolated buildings using independent component analysis. The model proposed utilizes multiple ground motion intensity measures from North American and Japanese earthquakes as inputs, and transforms them into an independent component space using independent component regression (ICR). Unlike other latent variable methods, such as principal component regression, ICR does not readily allow for dimensionality reduction of the components that do not contribute significantly to the explained variance of the original data set. Hence, a whitening‐step to transform the correlated variables into uncorrelated ones is introduced prior to performing ICR. Prediction results are presented and compared with the simulation results for two building models with increasing degree of complexity. The results show that the model based on ICR results in good estimates for the base displacement responses, and the standard errors remain relatively small and constant across a range of isolation periods. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
Dispersions for the pushover‐based risk assessment of reinforced concrete frames and cantilever walls 下载免费PDF全文
The paper presents the results of an investigation into the dispersion values, expressed in terms of limit‐state spectral accelerations, which could be used for the pushover‐based risk assessment of low‐height to mid‐height reinforced concrete frames and cantilever walls. The results of an extensive parametric study of a portfolio of test structures indicated that the dispersion values due to record‐to‐record variability and modelling uncertainty (βLS,RU) are within the range from 0.3 to 0.55 for the near collapse limit state, and between 0.35 and 0.60 for the collapse limit state. The dispersions βLS,RU proposed for the code‐conforming and the majority of old (non code‐conforming) frames are in between these values. On the other hand, the dispersions proposed for the old frames with a soft storey and an invariant plastic mechanism, and for the code‐conforming cantilever walls, are at the lower and upper bounds of the presented values, respectively. The structural parameters that influence these dispersions were identified, and the influence of different ground motion sets, and of the models used for the calculation of the rotation capacities of the columns, on the calculated fragility parameters was examined and quantified. The proposed dispersion values were employed in a practice‐oriented pushover‐based method for the estimation of failure probability for eight selected examples. The pushover‐based risk assessment method, although extremely simple and economical when compared with more rigorous probabilistic methods, was able to predict seismic risk with reasonable accuracy, thus showing it to be a practical tool for engineers. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
Seismic response of 20‐story base‐isolated and fixed‐base reinforced concrete structural wall buildings at a near‐fault site 下载免费PDF全文
This paper investigates numerically the seismic response of six seismically base‐isolated (BI) 20‐story reinforced concrete buildings and compares their response to that of a fixed‐base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three‐story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension‐resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low‐friction tension‐resistant crosslinear bearings, lead‐rubber bearings, and NFVDs. The designs of all buildings satisfy ASCE 7‐10 requirements, except that one component of horizontal excitation, is used in the 2D nonlinear response history analysis. Analysis is performed for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). At both the design earthquake and the MCE, the FB building develops large inelastic deformations and shear forces in the wall and large floor accelerations. At the MCE, four of the BI buildings experience nominally elastic response of the wall, with floor accelerations and shear forces being 0.25 to 0.55 times those experienced by the FB building. The response of the FB and four of the BI buildings to four unscaled historical pulse‐like near‐fault ground motions is also studied. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
Seismic response analysis using characteristic ground motion records for risk‐based decision‐making (3R method) 下载免费PDF全文
The concept of intensity‐based assessment for risk‐based decision‐making is introduced. It is realized by means of the so‐called 3R method (response analysis, record selection and risk‐based decision‐making), which can be used to check the adequacy of design of a new building or of the strengthening of an existing building by performing conventional pushover analysis and dynamic analysis for only a few ground motions, which are termed characteristic ground motions. Because the objective of the method is not a precise assessment of the seismic risk, a simple decision model for risk acceptability can be introduced. The engineer can decide that the reliability of a no‐collapse requirement is sufficient when collapse is observed in the case of less than half of, for example, seven characteristic ground motions. From the theoretical point of view, it is shown that the accuracy of the method is acceptable if the non‐linear response history analyses are performed at a low percentile of limit‐state intensity, which is also proven by means of several examples of multi‐storey reinforced concrete frame buildings. The 3R method represents a compromise between the exclusive use of either pushover analysis or dynamic analysis and can be easily introduced into building codes provided that its applicability is further investigated (e.g. asymmetric structures and other performance objectives) and that the procedure for the selection of characteristic ground motions is automated and readily available to engineers (www.smartengineering.si). 相似文献
14.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations. 相似文献
15.
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure. 相似文献
16.
A comprehensive approach is developed to estimate relevant design quantities—lateral deformations and axial forces—in isolation systems composed of lead–rubber bearings. The approach, applicable to symmetric and asymmetric‐plan systems, includes the effects of bidirectional excitation, rocking, and torsion; and is the culmination of previous work on this topic. The approach is based on nonlinear response history analysis of an isolated block using an advanced bearing model that incorporates the interaction between axial force and lateral response of the bearing, known as axial‐load effects. The rocking response of the system and peak axial forces are shown to depend on the isolation period, the normalized strength—or yield strength normalized by peak ground velocity, the ratios of rocking frequency about each horizontal axis to vertical frequency, and the normalized stiffness eccentricity. In an attempt to develop results widely applicable to asymmetric‐plan systems, eccentricity is introduced by varying the stiffnesses and strengths of individual bearings in an idealized, rectangular plan. This idealized system approach is shown to have limited success; when applied to actual asymmetric‐plan systems the design equations to estimate response are accurate for lateral deformations but err by up to 25% for axial forces. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
In the conventional seismic design of high‐rise reinforced concrete core‐wall buildings, the design demands such as design shear and bending moment in the core wall are typically determined by the response spectrum analysis procedure, and a plastic hinge is allowed to form at the wall base to limit the seismic demands. In this study, it is demonstrated by using a 40‐story core‐wall building that this conventional approach could lead to an unsafe design where the true demands—the maximum inelastic seismic demands induced by the maximum considered earthquake—could be several times greater than the design demands and be unproportionately dominated by higher vibration modes. To identify the cause of this problem, the true demands are decomposed into individual modal contributions by using the uncoupled modal response history analysis procedure. The results show that the true demands contributed by the first mode are reasonably close to the first‐mode design demands, while those contributed by other higher modes are much higher than the corresponding modal design demands. The flexural yielding in the plastic hinge at the wall base can effectively suppress the seismic demands of the first mode. For other higher modes, however, a similar yielding mechanism is either not fully mobilized or not mobilized at all, resulting in unexpectedly large contributions from higher modes. This finding suggests several possible approaches to improve the seismic design and to suppress the seismic demands of high‐rise core‐wall buildings. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
An overview of the applicability of a typical single‐mode pushover method (the N2 method) and two typical multi‐mode pushover methods (the modal pushover analysis (MPA) and incremental response spectrum analysis (IRSA) methods) for the analysis of single column bent viaducts in the transverse direction is presented. Previous research, which was limited to relatively short viaducts supported by few columns, has been extended to longer viaducts with more bents. The single‐mode N2 method is accurate enough for bridges where the effective modal mass of the fundamental mode is at least 80% of the total mass. The applicability of this method depends on (a) the ratio of the stiffness of the superstructure to that of the bents and (b) the strength of the bents. In short bridges with few columns, the accuracy of the N2 method increases as the seismic intensity increases, whereas in long viaducts (e.g. viaducts with lengths greater than 500 m) the method is in general less effective. In the case of the analyzed moderately irregular long viaducts, which are common in construction design practice, the MPA method performed well. For the analysis of bridges where the modes change significantly, depending on the seismic intensity, the IRSA method is in principle more appropriate, unless a viaduct is torsionally sensitive. In such cases, all simplified methods should be used with care. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
The paper deals with the applicability of the extended N2 method to base‐isolated plan‐asymmetric building structures. The results obtained by the usual pushover analysis of a 3D structural model are further combined with the aid of linear dynamic (spectral) analysis to account for the dynamic effects caused by structural asymmetry. In the paper, the method has been applied to the seismic analysis of a mass‐eccentric four‐storeyed RC frame building isolated with lead rubber bearings. Three different positions of the center of isolation system (CI) with respect to the center of mass (CM) and the center of stiffness of the superstructure (CS) were considered. The response was analyzed for three different eccentricities, three different torsional to lateral frequency ratios of the superstructure, and two ground motion intensities. The stiffness of the isolators was selected for three different protection levels, which resulted in elastic as well as moderately to excessively damaged superstructure performance levels. The results are presented in terms of the top, base and relative displacements, as well as the stiff/flexible side amplification factors. A more detailed insight into the nonlinear behavior of the superstructure is given in a form of ductility factors for the flexible and stiff side frames. The results of the extended N2 method for selected lateral load distributions are compared with the average results of nonlinear dynamic analyses. It was concluded that the extended N2 method could, with certain limitations, provide a reasonable prediction of the torsional influences in minor to moderately asymmetric base‐isolated structures. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
This paper proposes bi‐directional coupled tuned mass dampers (BiCTMDs) for the seismic response control of two‐way asymmetric‐plan buildings subjected to bi‐directional ground motions. The proposed BiCTMD was developed from the three‐degree‐of‐freedom modal system, which represents the vibration mode of a two‐way asymmetric‐plan building. The performance of the proposed BiCTMD for the seismic response control of elastic two‐way asymmetric‐plan buildings was verified by investigating the reductions of the amplitudes of the associated frequency response functions. In addition, the investigation showed that the proposed BiCTMD is effective in reducing the seismic damage of inelastic asymmetric‐plan buildings. Therefore, the BiCTMD is an effective approach for the seismic response control of both elastic and inelastic two‐way asymmetric‐plan buildings. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献