首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of groundwater quality in and around Vedaraniyam,South India   总被引:1,自引:1,他引:0  
Groundwater from 47 wells were analyzed on the basis of hydrochemical parameters like pH, electric conductivity, total dissolved solids, Ca2+, Mg2+, Na+, K+, Cl?, CO3 2?, HCO3 ?, NO3 ?, PO4 3? and F? in the Cauvery delta of Vedaraniyam coast. Further, water quality index (WQI), sodium percentage (Na %), sodium absorption ratio, residual sodium carbonate, permeability index and Kelley’s ratio were evaluated to understand the suitability of water for drinking and irrigation purposes. The result shows significant difference in the quality of water along the coastal stretch. The order of dominance of major ions is as follows: Na+ ≥ Mg2+ ≥ Ca2+ ≥ K+ and Cl? ≥ HCO3 ? ≥ CO3 2? ≥ PO4 3? ≥ F?. Na/Cl, Cl/HCO3 ratio and Revelle index confirmed that 60–70 % of the samples were affected by saline water intrusion. WQI showed that 36 % of the samples were good for drinking and the remaining were poor and unsuitable for drinking purpose. The degradation of groundwater quality was found to be mainly due to over-exploitation, brackish aquaculture practice, fertilizer input from agriculture and also due to domestic sewage.  相似文献   

2.
The main discharging sources of the Pabdeh karstic anticline in the southwest of Iran are two closely spaced springs called Bibitalkhone and Gariveh. Both springs have emerged about 200 m apart at the trend of a crushed zone resulted from the hidden Pabdeh thrust fault and a contact with salty-gypsum layers. Although superficially similar geological conditions of these springs, their discharge and water quality are different. The discharge, electrical conductivity (EC), and water type of the Bibitalkhone Spring are more than 2 m3/s, over 1000 μS/cm, and Cl–Na, respectively, while those of Gariveh Spring presented in order are 0.05 m3/s, less than 500 μS/cm, and HCO3–Ca (Mg). Hydrogeological, hydrochemical, tectonic, geomorphologic, and geophysical data were used to verify these diversities. The results marked that geological and tectonic settings of the area is governing different discharge rates and chemistry of the springs.  相似文献   

3.
Detailed hydrogeochemical investigation has provided new information concerning the major factors and mechanisms controlling the groundwater chemistry of Chougafiya basin. The hydrogeochemical characteristics of groundwaters comprise three main types: Cl–SO4–Ca, Cl–SO4–Na and Cl–Na. Hydrochemical characteristics based on the bivariate diagrams of major (Cl?, SO4 2?, NO3 ?, HCO3 ?, Na+, Mg2+, K+ and Ca2+) and some trace (Br? and Sr2+) ions, mineral saturation indices and hierarchical cluster analysis indicate different origins of groundwater mineralization. The water–rock interaction (dissolution of evaporitic minerals), followed by cation exchange reactions with clay minerals, constitute the main processes that control groundwater salinization. However, the chemical composition of brackish groundwater in the central and southern parts of the study area is influenced by a mixing process with Sabkhas salt groundwater. The mixing proportions inferred from chloride mass balance prove that the contribution of Sabkhas groundwater to Quaternary aquifer ranges between 2.7 and 9.1 %. These intrusion rates reflect the progress of the saltwater–freshwater interface, which is mainly controlled by the piezometric level variation and the distance to the Sabkhas.  相似文献   

4.
Küçük Menderes River forms a rich coastal wetland inside in the Selçuk plain. Three saline/brackish lakes, one swamp and Küçük Menderes River are these wetlands’ components. Alkaline-slightly alkaline type lakes are recharged from precipitation and karstic springs that discharge from marble-schist and marble-alluvium contacts in the northern and southern parts of the study area. Water types of the wetland are Na–Cl and Na–Ca–Mg–HCO3–Cl in both rainy and dry seasons. Both seawater intrusion and evaporation, as being the sources of the ions, justify the presence of Na–Cl, Na–SO4 and Cl–SO4, in the wetland water. Environmental isotopes were used to identify the relationship between wetland and groundwater in the Selçuk plain. The δ18O and δD composition of wetland area samples have changed between ?6.42 to ?4.56‰, and ?36.40 to ?23.80‰, respectively. The lakes and rivers are plotted on the mixing line by slope of 5.2 and these data indicate that wetland is affected from seawater intrusion. The recharge area that was sampled in order to compare the wetland has Ca–HCO3 water type with a neutral-slightly alkaline pH values and the main hydrogeochemical process is weathering the different types of silicates. Iron, manganese and selenium are the dominant minor ions due to the high biological activities and organic matters in the lakes. There are two contamination risks for this wetland: (1) waste disposal site and (2) water treatment plant where the purified waters are released into the river. EC, Al, As, Cd, Cu, Fe and Zn values exceed those of aquatic life standards. In the near future these sites will pose a danger for wetland wild life and surrounding irrigation water suppliers.  相似文献   

5.
The Imphal valley is an intramontane basin confined within an anticlinorium of several anticlines and synclines in the Disang Group of rocks of Tertiary age. This valley of more than 2 million people is occupied by fluvio-lacustrine deposits of Quaternary age and is located in the central part of the Indo-Myanmar range of Northeast India. The hydrogeochemical parameters of temperature, pH, ORP, TDS, Na, Cl, Br, Ba, B, Sr, Li, δ18O, HCO3, K, Mg, Ca, NO3, PO4, SO4 in 173 samples using ion-chromatograph, ICP (AES), ICP (OES), ICP (MS) and 37 dugwells were studied to understand the occurrence and origin of salinization process for the first time. The order of abundance of ions is identified as HCO3 > Na > Cl > Ca > Mg > K > NO3 > PO4 > Sr > Br > B>Ba > Li > SO4. Five hydrochemical facies (Na–Cl, Ca–Mg–HCO3, Na–HCO3, Ca–Mg–HCO3–Cl and Ca–Mg–Cl) represent the types of waters. The saline-dominated water types (Na–Cl and Na–HCO3) represent piedmont and the rest of the facies represent alluvial plain and flood plain groundwaters. Durov’s diagram reveales initial and intermediate stages of groundwater evolution. Isotope δ18O, Gibbs diagram and ions scatter plots suggest evaporation and crystallization processes leading to halite encrustation in the Disang shales. Negative Eh, low NO3 and the absence of SO4 indicates reduced condition coupled with rich dissolve organic matters leading to elevation of salts in soils around piedmont where the rock type is exclusively of the Disang shales. Trilinear plot, correlation matrix and water table flow analysis suggest salinization of groundwater originates in piedmont groundwater and disseminates towards alluvial plain and flood plain along the flow path.  相似文献   

6.
The leaching processes along the flow path and over abstraction of the alluvial aquifer, the principal aquifer in delta Tokar, by the agricultural and domestic sectors and natural factors, have led to its salinization which may be due to interaction between geological formations and adjacent brackish and saline water bodies as well as seawater transgression. The main objectives of this study are to assess the hydrochemical characteristics of the groundwater and to delineate the locations and the sources of aquifer salinization. Water samples in the project area were chemically analyzed for major cations and anions at the laboratory by the standard analytical procedures. Chemical data and water level measurements were manipulated using GIS techniques for hydro chemical and flow direction maps and piper diagram for chemical facies and SPSS software for statistical analyses such as basic statistics (mean and standard deviation) and Spearman’s correlation matrix. The general flow direction of the groundwater is from Southwest towards East and Northeast. The hydraulic gradient is relatively steeper at the apex of the delta (0.06) and amounts to 0.005 at the distal part of the delta. The average transmissivity value of the water bearing formations was found to be about 4.5?×?103 m2/s, whereas, the storage coefficient was about 0.28. A hydrochemical study identified the locations and the sources of aquifer salinization and delineated their areas of influence. The investigation indicates that the aquifer water quality is significantly modified as groundwater flows from the southwestern parts of the study area, where the aquifer receives its water by lateral underflow from Khor Baraka flood plain, to the central and northeastern parts, with few exceptions of scattered anomalous concentration pockets in the deltaic plain. Significant correlation between TDS and/or EC with the major components of Na+, Cl?, and SO 4 ?2 ions is an indication of seawater influence on the groundwater salinity. Moreover, Cl?, SO 4 2? , and Na+ are predominant ions followed by Ca2+ and HCO 3 ? . Hence, four types of groundwater can be chemically distinguished: Na–Ca–SO4–Cl– facies, Na–Cl–SO4–HCO3– facies, Na–Ca–Mg–SO4–Cl–HCO3 facies, and Na–Ca–Mg–Cl–SO4 facies. The processes that govern changes in groundwater composition as revealed by chemical and statistical analyses are mainly associated with over-abstraction, biodegradation, marine intrusions, and carbonate saturation.  相似文献   

7.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

8.
Groundwater is a precious resource for humankind not only in Nepal but also across the globe due to its diverse functions. A total of 48 groundwater samples were collected from three villages of Nawalparasi district, Nepal, during pre-monsoon and monsoon to estimate the overall groundwater quality and to identify the sources of contamination with emphasis on arsenic (As). The average concentrations of all tested groundwater quality parameters (temp., pH, EC, ORP, Ca2+, Mg2+, Na+, K+, Cl?, F?,SO4 2?, PO4 3?, HCO3 ?, NO3 ?, Cu, Ni, Mn, Cd, Pb, Fe, Zn, Cr, and As) were well within permissible limits of WHO for drinking water, except for Ni, Cd, Pb, Cr, and As. Concentration of As ranged from 60 to 3,100 μg L?1 and 155 to 1,338 μg L?1 in pre-monsoon and monsoon, respectively. The Piper diagram of the groundwater chemistry showed groundwater of Nawalparasi belongs to Ca–Mg–HCO3 and Mg–HCO3 water type with HCO3 ? as dominant ions. As content in the study area was negatively correlated with Fe in pre-monsoon, while it was positively correlated in monsoon. Furthermore, As was negatively correlated with oxidation reduction potential suggesting reducing condition of groundwater. Principal component analysis revealed seven major factors that explained 81.996 and 83.763 % of total variance in water quality in pre-monsoon and monsoon, respectively. The variance of water quality was related mainly with the degree of water–rock interaction, mineralization, and anthropogenic inputs.  相似文献   

9.
This study investigates the origin and chemical composition of the thermal waters of Platystomo and Smokovo areas in Central Greece as well as any possible relationships of them to the neighboring geothermal fields located in the south-eastern part of Sperchios basin. The correlations between different dissolved salts and the temperature indicate that the chemical composition of thermal waters are controlled by, the mineral dissolution and the temperature, the reactions due to CO2 that originates possibly by diffusion from the geothermal fields of Sperchios basin and the mixing of thermal waters with fresh groundwater from karst or shallow aquifers. Two major groups of waters are recognized on the basis of their chemistry: thermal waters of Na–HCO3–Cl type and thermal waters mixed with fresh groundwater of Ca–Mg–Na–HCO3 type. All thermal waters of the study area are considered as modified by water–rock interaction rainwater, heated in depth and mixed in some cases with fresh groundwater when arriving to the surface. Trace elements present low concentrations. Lithium content suggests discrimination between the above two groups of waters. Boron geochemistry confirms all the above remarks. Boron concentration ranges from 60 μg L?1 to 10 mg L?1, while all samples’ constant isotopic composition (δ11B ≈ 10 ‰) indicates leaching from rocks. The positive correlation between the chemical elements and the temperature clearly indicates that much of the dissolved salts are derived from water–rock interactions. The application of geothermometers suggests that the reservoir temperature is around 100–110 °C. Chalcedony temperatures are similar to the emergent temperatures and this is typical of convective waters in fault systems in normal thermal gradient areas.  相似文献   

10.
There are 59 springs at the Gevas–Gurp?nar–Güzelsu basins, 38 of these springs emerge from the fractured karst aquifers (recrystallized limestone and travertine) and 21 emerge from the Yuksekova ophiolites, K?rkgeçit formation and alluvium. The groundwater samples collected from 38 out of the total of 59 springs, two streams, one lake and 12 wells were analyzed physico-chemically in the year 2002. EC and TDS values of groundwater increased from the marble (high altitude) to the ophiolites and alluvium (toward Lake Van) as a result of carbonate dissolution and connate seawater. Five chemical types of groundwater are identified: Ca–Mg–HCO3, Mg–Ca–HCO3, Mg–Na–HCO3, Na–Ca–HCO3 and Mg–Ca–Na–HCO3. The calculations and hydrochemical interpretations show that the high concentrations of Ca2+, Mg2+ and HCO3 ? as predominant ions in the waters are mainly attributed to carbonate rocks and high pCO2 in soil. Most of the karst springs are oversaturated in calcite, aragonite and dolomite and undersaturated in gypsum, halite and anhydrite. The water–rock interaction processes that singly or in combination influence the chemical composition of each water type include dissolution of carbonate (calcite and dolomite), calcite precipitation, cation exchange and freshening of connate seawater. These processes contribute considerably to the concentration of major ions in the groundwater. Stable isotope contents of the groundwater suggest mainly direct integrative recharge.  相似文献   

11.
Geothermal water is plentiful in Changbai Mountain region, northeastern China, due to the volcanic activities and widespread faults. For the exploration of geothermal resources, this study uses quartz and cation geothermometer to estimate the temperatures of the geothermal reservoir and uses the tubular models to evaluate the thermal gradient. The hydrogeochemical characteristics of the geothermal resources were also evaluated by hydrogeochemical analysis. The results showed that the geothermal reservoir temperatures of the four major thermal springs in Changbai Mountain region range from 72 to 169 °C. The average geothermal reservoir temperatures of Jinjiang hot springs, Changbai hot springs I, Xianrenqiao hot springs, and Changbai hot springs II are 129.25, 169, 89, and 73.67 °C, respectively. The geothermal gradient values of the four major thermal springs have different characteristics. The geothermal gradient values of Jinjiang hot springs and Changbai hot springs I are 4.6 and 3.1 °C/100 m, respectively. The geothermal gradient values of Xianrenqiao thermal springs and Changbai thermal springs II are both lower than 1.5 °C/100 m, with the values of 1.1 and 1.4 °C/100 m. And the geothermal gradients are influenced by Changbai Mountain Tianchi volcano. In addition, the water chemical analyses showed that the geothermal water types are HCO3-Na with higher concentrations of Na+, Cl?, SO4 2?, TDS, and HCO3 ? than the non-thermal waters, which suggested a deep and long water cycle of the thermal water, and therefore a sufficient water-rock interaction.  相似文献   

12.
A geophysical and geochemical study was carried out in the Maneadero aquifer, Baja California, Mexico, with the aim of identifying potential recharge locations for reclaimed water (RW). This coastal aquifer shows a significant decline in water quality, both as a result of salinization and the pollution by nitrates. Total dissolved solids (TDS) in an extreme case increased from 4 g l?1 in 2000 to 27 g l?1 in 2011. Nitrate as N–NO3, reaches 46 mg l?1. Based on their geochemistry and location, four water-quality zones are identified: (a) fresh water with TDS ≈ 1 g l?1 in the upper creeks, (b) mixture between seawater and freshwater in the coast-proximal sections, (c) water significantly enriched in nitrate below and adjacent to the town of Maneadero, and (d) brackish water with no signs of current interaction with freshwater. The 3D geophysics identifies the influence of modern recharge areas and also buried flow-paths down to at least 30 m depth. The locations best suitable for aquifer recharge are those with equal or higher TDS concentrations (>2.5 g l?1) than RW, which are located at the brackish water zone and/or at the coastal limits of the mixing zones.  相似文献   

13.
Groundwater is a finite resource that is threatened by pollution all over the world. Shimabara City, Nagasaki, Japan, uses groundwater for its main water supply. During recent years, the city has experienced severe nitrate pollution in its groundwater. For better understanding of origin and impact of the pollution, chemical effects and surface–groundwater interactions need to be examined. For this purpose, we developed a methodology that builds on joint geochemical analyses and advanced statistical treatment. Water samples were collected at 42 sampling points in Shimabara including a part of Unzen City. Spatial distribution of water chemistry constituents was assessed by describing Stiff and Piper diagrams using major ions concentrations. The nitrate (NO3?+?NO2–N) concentration in 45% of water samples exceeded permissible Japanese drinking level of 10 mg L??1. Most of the samples showed Ca–HCO3 or Ca–(NO3?+?SO4) water types. Some samples were classified into characteristic water types such as Na–Cl, (Na?+?K)–HCO3, (Na?+?K)–(SO4?+?NO3), and Ca–Cl. Thus, results indicated salt water intrusion from the sea and anthropogenic pollution. At the upstream of Nishi River, although water chemistry was characterized as Ca–HCO3, ion concentrations were higher than those of other rivers. This is probably an effect of disinfection in livestock farming using slaked lime. Positive correlation between NO3? and SO42?, Mg2+, Ca2+, Na+, K+, and Cl? (r?=?0.32–0.64) is evidence that nitrate pollution sources are chemical fertilizers and livestock waste. Principal component analysis showed that chemistry of water samples can be explained by three main components (PCs). PC1 depicts general ion concentration. PC2 and PC3 share influence from chemical fertilizer and livestock waste. Cluster analyses grouped water samples into four main clusters. One of these is the general river chemistry mainly affected by PC1. The others reflect anthropogenic activities and are identified by the combination of the three PCs.  相似文献   

14.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

15.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   

16.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

17.
A field study was conducted to assess the location and the seasonal variation in physicochemical parameters of springs (outlets of underground water channels) of Bhetagad watershed of Uttaranchal hills, India. Traditionally, spring water is used for multiple purposes in this region. The average population density of the watershed is 366 persons km?2, distributed within an altitudinal range of 1,090–2,060 m a.m.s.l. and 23.52 km2 area. Twelve springs, in three different land uses e.g. pine forest, rainfed agriculture near settlements and irrigated agriculture near settlements were monitored in the winter (January), summer (June) and monsoon (August) during 1998 and 1999. The water quality parameters selected, in the present study are pH, EC, TDS, DO, free CO2, total hardness, Ca2+, Mg2+, CO32?, HCO3?, Cl-, NO3? and SO42? ions. Some springs in pine forests exhibit lower pH values than the permissible limit. Springs, with their location in agriculture and settlement, show slightly higher EC than the springs in pine forests. All the springs, near the irrigated agricultural land recorded higher nitrate ion concentration.  相似文献   

18.
Insufficient knowledge of the hydrogeochemistry of aquifers in the Central Region of Ghana has necessitated a preliminary water quality assessment in some parts of the region. Major and minor ions, and trace metal compositions of groundwater have been studied with the aim of evaluating hydrogeochemical processes that are likely to impair the quality of water in the study area. The results show that groundwater in the area is weakly acidic with mean acidity being 5.83 pH units. The dominant cation in the area is Na, followed by K, Ca, and Mg, and the dominant anion is Cl?, followed by HCO3 ? and SO4 2?. Two major hydrochemical facies have been identified as Na–Cl and Na–HCO3, water types. Multivariate statistical techniques such as cluster analysis (CA) and factor analysis/principal component analysis (PCA), in R mode, were employed to examine the chemical compositions of groundwater and to identify factors that influenced each. Q-mode CA analysis resulted in two distinct water types as established by the hydrochemical facies. Cluster 1 waters contain predominantly Na–Cl. Cluster 2 waters contain Na–HCO3 and Na–Cl. Cluster 2 waters are fresher and of good quality than cluster 1. Factor analysis yielded five significant factors, explaining 86.56% of the total variance. PC1 explains 41.95% of the variance and is contributed by temperature, electrical conductivity, TDS, turbidity, SO4 2?, Cl?, Na, K, Ca, Mg, and Mn and influenced by geochemical processes such as weathering, mineral dissolution, cation exchange, and oxidation–reduction reactions. PC2 explains 16.43% of the total variance and is characterized by high positive loadings of pH and HCO3 ?. This results from biogenic activities taking place to generate gaseous carbon dioxide that reacts with infiltrating water to generate HCO3 ?, which intend affect the pH. PC3 explains 11.17% of the total variance and is negatively loaded on PO4 3? and NO3 ? indicating anthropogenic influence. The R-mode PCA, supported by R-mode CA, have revealed hydrogeochemical processes as the major sources of ions in the groundwater. Factor score plot revealed a possible flow direction from the northern sections of the study area, marked by higher topography, to the south. Compositional relations confirmed the predominant geochemical process responsible for the various ions in the groundwater as mineral dissolution and thus agree with the multivariate analysis.  相似文献   

19.
This paper focuses on the Qareh Sou Basin in Golestan Province, Iran. Golestan Province is the third largest cereal producer in Iran and water scarcity and salinity are major problems in this area. This study attempts to facilitate the comprehension of system behavior with respect to water quality issues and hydro-geochemical coefficients within the Qareh Sou Basin. This study was carried out during the year 2010. Various parameters, such as pH, EC, chloride, sulfate, bicarbonate, sodium, potassium, calcium and magnesium have been determined for evaluation purposes. Then, Ca/Mg, Na/Cl, Mg/(Ca + Mg), Ca/HCO3, (Ca + Mg)–(HCO3 + SO4), (Na + K)–Cl, (Ca + Mg + Na + K)–Cl, HCO3 + SO4, Ca + Mg and chloro-alkaline indices (CAI) were calculated. Results show that cation exchange probably is an important factor in the hydrochemistry and silicate mineral weathering. Also, CAI-1 plot against CAI-2 demonstrates that most of samples have positive values which suggest normal ion exchange in the system. The carbonic acid is the main agent of calcite, limestone and dolomite weathering which occurs in some stations. According to Chadha’s diagram, the type of water is determined as Ca–Mg–HCO3.  相似文献   

20.
The physical (turbidity, color, smell, taste, pH, and conductivity) and geochemical properties (Ca, Mg, Na, Fe, Mn, Al, K, Cl?, HCO3 ?, SO4 2?, Fe, Cu, Co, Ni, Zn, Cd, Pb, and Cr) of the drinking water in Gümü?hane city center were determined. This city center constitutes the study area. The pH levels of the water samples ranged from 6.3 to 8.2, and their conductivities ranged between 240 and 900 μS. These findings were concordant with the drinking water standards of the Turkey Standard Institute and the World Health Organization. The hardness of the water samples in the study area was between 18.1 and 115.1 °Fr. These samples were classified as extremely hard, hard, and quite hard. In addition, an assessment using the criteria for Inland Surface Water Classification indicated that considering certain parameters (pH levels, amount of Na, SO4 2?, Fe, Mn, Al, Co, Ni, Cu, and Cr), the samples belonged to class I (high quality) water. When Cl? amount and conductivity were considered, the samples belonged to the first and second classes (less polluted) of water. The water in the study area was generally classified as carbonated and sulfated (Ca + Mg > Na + K) water classes. This water contained more weak acids than strong acids (HCO3 ? + CO3 2? > Cl? + SO4 2?). The pH levels (6.3–8.2) of the water in the study area were unrelated to the varying concentrations of metals in the water. Elements such as Fe, Ni, Cd, Pb, Zn, and Cu increase in the water through the water–rock interaction in the area in which water rises or through the mixture of water with either mine or industrial wastes. In addition, several water samples belonged to an acceptable water class for drinking and usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号