首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Land use and land cover changes are local and place specific, occurring incrementally in ways that often escape our attention. This study sought to detect changes in land cover in the Tema Metropolis of Ghana from 1990 to 2010. Multispectral Landsat Thematic Mapper data sets of 1990, 2000 and 2007 were acquired, pre-processed and enhanced. Unsupervised classification of the images was performed and six land cover classes (water, wetlands, closed vegetation, open vegetation, cropped lands, and built-up) were derived. The post-classification change detection technique was performed to derive the changes in land cover and their corresponding change matrices. Between 1990 and 2010, built-up areas expanded steadily to become the most prevalent land cover type in the metropolis, reducing vegetation cover dramatically. High population growth with its attendant rise in the demand for housing, and increasing commercial activities, were found to have influenced land cover changes over the period.  相似文献   

3.
Some recent land use changes in Albania, such as deforestation, cropland abandonment, and urban sprawl, have caused serious increase of erosion risk. The main objective of this study was to map erosion risk in Korçe region and assess the degree at which every land use is concerned. The G2 erosion model was applied, which can provide erosion maps and statistical figures at month-time intervals using input from free European and global geodatabases. The mapping results in Korçe region were derived at a 30-m cell size, which is an innovation for G2. Autumn-winter months were found to be the most erosive, with average erosion rates reaching the maximum in November and December, i.e. 2.62 and 2.36 t/ha, respectively, while the annual rate was estimated at 10.25 t/ha/yr. Natural grasslands, shurblands, mixed forests, and vineyards showed to exhibit the highest mean erosion rates, while shrublands, broad-leaved forests and natural grasslands were found to be the most extended land covers risky for non-sustainable erosion rates (i.e. >10 t/ha/yr). A detailed examination of the detected hot spots is now necessary by the competent authorities, in order to apply appropriate, site-specific conservation measures. Notably, use of SPOT VGT data did not prevent the maps from having extended gaps due to cloudiness. Sentinel-2 time series, freely available by the European Space Agency (ESA), have the potential to improve spatiotemporal coverage of V-factor, thus further empowering the G2 model, in the near future.  相似文献   

4.
Natural Hazards - Urban land surface temperature (LST) is dependent on many factors, including land cover, building materials, urban density, and other human activities. The current study evaluated...  相似文献   

5.
Arid regions in Asia are commonly characterized by rapidly growing populations with limited land resources and varying rainfall frequencies under climatic change. Despite being one of the most important environmental challenges in Asia, the changing aridity in this region, particularly due to large-scale land cover change, has not been well documented. In this study, we used rainfall data and a new land heterogeneity index to identify recent trend in land cover changes in the Asian arid regions. The result indicates a significant decreasing trend of barren lands and an increasing trend of vegetated lands. Although the potential land cover change is commonly believed to be strongly sensitive to rainfall change, such sensitivity has not been observed during the nine-year period (2001–2009) analyzed. Through the analyses of two separate periods (2001–2005 and 2005–2009), the sensitivity of rainfall to land cover change in arid regions is found to be dependent on the initial spatial heterogeneity of vegetated land cover. The approach used and the findings in this study represent an important step toward better understanding of large-scale land cover change in the Asian arid regions, and have the potential to predict future land cover change under various climate change scenarios.  相似文献   

6.
Wular Lake, one of the largest freshwater lakes of Jhelum River Basin, is showing signs of deterioration due to the anthropogenic impact and changes in the land use/land cover (LULC) and hydrometeorological climate of the region. The present study investigated the impacts of temporal changes in LULC and meteorological and hydrological parameters to evaluate the current status of Wular Lake environs using multisensor, multitemporal satellite and observatory data. Satellite images acquired for the years 1992, 2001, 2005, and 2008 were used for determining changes in the LULC in a buffer area of 5 km2 around the Wular Lake. LULC mapping and change analysis using the visual interpretation technique indicated significant changes around the Wular Lake during the last two decades. Reduction in lake area from 24 km2 in 1992 to 9 km2 in 2008 (?62.5 %) affected marshy lands, the habitat of migratory birds, which also exhibited drastic reduction from 85 km2 in 1992 to 5 km2 in 2008 (?94.117 %). Marked development of settlements (642.85 %) in the peripheral area of the Wular Lake adversely affected its varied aquatic flora and fauna. Change in climatic conditions, to a certain extent, is also responsible for the decrease in water level and water spread of the lake as witnessed by decreased discharge in major tributaries (Erin and Madhumati) draining into the Wular Lake.  相似文献   

7.
Using the Total Ozone Mapping Spectrometer (TOMS) data from the National Aeronautics and Space Administration (NASA) earth satellites, the Aerosol Optical Depth (AOD) as indicated by AOD Index (AI) for the period 1978–2005 is analyzed for northern China. The spatial distribution of annual mean AI has the largest values in the desert regions of northwestern China, such as southern Xinjiang Taklimakan Basin, western Gansu and Qinghai’s Qaidam Basin. Large values are found in western Inner Mongolia, the Jogger Basin, and north of the Loess Plateau, as well as in the North China and Northeast China Plains. In Northern China, the AI of spring and summer is larger than in other seasons. The large AI values in spring register the most extensive coverage, but the AI values in regions affected by the Asian monsoon experience a significant decrease during the summer season. The lowest AI values generally occur in autumn in North and Northeast China, but they appear in winter in the northwestern arid region. Overall, the analysis results using TOMS AI data well reflect the spatiotemporal characteristics of dust aerosol as reported previously based on the dust weather observation data, with greater consistency seen in northwestern arid and semi-arid regions. It is also realized that the TOMS AI data are potentially useful for estimating atmospheric mineral aerosol deposition flux in northern China in order to better understand the formation and evolution of China loess in the Quaternary.  相似文献   

8.
Statistical approach to the analysis of the relationship between the frequency of flood events and land cover (LC) changes in small catchments of Slovakia is presented in this paper. The data for identification of LC changes were taken from the 1990 and 2006 CORINE LC (CLC) data layers. They were derived by computer-aided visual interpretation of satellite images under the CLC Projects. The data about frequency of flood events in small catchments are from the period 1996–2006. Two hypotheses were formulated: (1) the greater the area of LC changes, the more frequent flood events; (2) in catchments where LC changes accelerating formation of direct runoff (e.g. urbanization, deforestation, farming) dominates, flood events are more frequent than in catchments where the prevailing LC changes (e.g. afforestation) reduce formation of direct runoff. Validity of hypotheses was tested in the framework of flood potential of catchments by two-factor ANOVA method. The obtained results indicate that (1) flood event frequency increases with the increasing total area of LC changes in a catchment. This tendency clearly manifests itself in catchments with very high flood potential. It is somewhat less distinct in catchments with moderate and high flood potentials. (2) There were no differences in flood event frequency between the group of catchments, where LC changes accelerating the formation of the direct runoff prevailed and the group of catchments where LC changes decelerating the formation of direct runoff were dominated.  相似文献   

9.
We present the results of long-term (1978–1998) infrared and optical observations of the unique symbiotic system CH Cygni. The system’s IR brightness and color variations are generally consistent with a model in which the source is surrounded by a dust envelope with variable optical depth. There was evidence for a hot source in the CH Cyg system during the entire period from 1978 to 1998, with the exception of several hundred days in 1987–1989. Over the observation period, there was tendency for the system to gradually redden at 0.36–5 µm, accompanied by a brightness decrease at 0.36–2.2µm and a brightness increase at 3.5 and 5 µm. The “activation” of the cool sources in 1986–1989 nearly coincided with the disappearance of radiation from the hot source. The dust envelope of CH Cyg is not spherically symmetrical, and its optical depth along the line of sight is substantially lower than its emission coefficient, the mean values being τex(L)~0.06 and τem(L)~0.16. We confirm the presence of a 1800-to 2000-day period in both the optical and IR, both accounting for, and not accounting for, a linear trend. The spectral type of the cool star varied between M5III and M7III. The spectral type was M5III during the phase of maximum activity of the system’s hot source, while the spectral type was M7III when the star’s optical radiation was almost completely absent. The luminosity of the cool giant varied from (6300–9100)L ; its radius varied by approximately 30%. The ratio of the luminosities of the dust envelope and the cool giant varied from 0.08 to 0.5; i.e., up to 50% of the cool star’s radiation could be absorbed in the envelope. The temperature of dust particles in the emitting envelope varied from 550 to 750 K; the radius of the envelope varied by more than a factor of 2. The expansion of the emitting dust envelope observed in 1979–1988 accelerated: its initial velocity (in 1979) was ~8 km/s, while the maximum velocity (in 1987–1989) was ~180 km/s. Beginning in 1988, the radiation radius of the dust envelope began to decrease, first at ~45 km/s and then (in 1996–1998) at ~3 km/s. From 1979 until 1996, the mass of the emitting dust envelope increased by approximately a factor of 27 (the masses in 1979 and 1988 were ~1.4×10?7 M and ~3.8×10?6 M , respectively), after which (by 1999) it decreased by nearly a factor of 7. The mass-loss rate of the cool star increased in 1979–1989, reaching ~3.5×10?6 ~3.5×10?6 M /yr in 1988. Subsequently (up to the summer of 1999), the envelope itself began to lose mass at a rate exceeding that of the cool star. The largest input of matter to the envelope occurred after the phase of optical activity in 1978–1985. If the envelope’s gas-to-dust ratio is ~100, the mass of matter ejected in 1988 was ~4×10?4 M .  相似文献   

10.
11.
The evolution of the Yangtze delta, where the largest economic zone (e.g. Shanghai) in China is located, directly affects the regional economic development and ecoenvironment. The mean high tide lines as the coastline delineated from multi-temporal remote sensing data of Landsat during 1974–2010 at intervals of about 8 years were used to examine the shoreline progradation and recession of the Yangtze delta in the past four decades. Our results show that significant parts of the shoreline in the Yangtze delta in the past four decades and particularly after the operation of the Three Gorges Reservoir (TGR), the world’s largest hydropower project ever built, experienced continual progradation despite a substantial decrease in the Yangtze sediment input. During 1974–2010, the area of the Yangtze subaerial delta increased by 667 km2 with a net progradation rate of 18.5 km2/yr, and the maximum progradation occurred at the eastern parts of Chongming Island and Nanhui bank, where the coastline advanced seaward about 8 and 6 km, respectively, with mean net progradation rates of 0.22 and 0.17 km/yr, respectively. An important (probably dominant) reason for the Yangtze shoreline progradation despite markedly decreased riverine sediment supply is coastal engineering, such as sea reclamation works, filling project, and wharf constructions.  相似文献   

12.
Mountain glacier is one of the extremely sensitive indicators for climate change, and its surface motion distribution and corresponding variation are valuable information for understanding ice mass exchange and glacier dynamics. This paper presents the long-term ice velocity distributions of Inylchek Glacier in the Tianshan region by pixel-tracking algorithm with time-series Landsat imagery acquired during 2006–2016. Then the monitored ice motion fields of Inylchek Glacier were carefully analyzed and revealed a generally similar spatial distribution characteristic. Most of the ice of the North Inylchek Glacier remains in a stagnant state except for the upstream part, but a relatively high velocity of 20–40 cm/day with an RMSE of 3 cm/day was observed on most part of the South Inylchek Glacier, except for the slow-moving glacier terminus. We also state the glacier dynamics around Lake Merzbacher and their possible effect on its glacier lake outburst flood (GLOF) risk. Besides, the surface velocity distribution on South Inylchek Glacier surface during the ablation period from 2014 to 2016 was also established and also compared with annual velocity. The corresponding difference yields that there is a positive relation between ice motion and temperature variation. Therefore, the time-series ice surface motion yielded by the Landsat imagery thus could provide us an efficient and low-cost way to analyze the current state and changes in glaciers, thanks to the continuous and regular spaceborne observations provided by the Landsat satellites.  相似文献   

13.
We present an analysis of spectrophotometric observations of the latest cycle of activity of the symbiotic binary Z And from 2006 to 2010. We estimate the temperature of the hot component of Z And to be ≈150 000−170 000 K at minimum brightness, decreasing to ≈90 000 K at the brightness maximum. Our estimate of the electron density in the gaseous nebula is N e = 1010−1012 cm−3 in the region of formation of lines of neutral helium and N e = 106−107 cm−3 in the region of formation of the [OIII] and [NeIII] nebular lines. A trend for the gas density derived from helium lines to increase and the gas density derived from [OIII] and [NeIII] lines to simultaneously decrease with increasing brightness of the system was observed. Our estimates show that the ratios of the theoretical and observed fluxes in the [OIII] and [NeIII] lines agree best when the O/Ne ratio is similar to its value for planetary nebulae. The model spectral energy distribution showed that, in addition to a cool component and gaseous nebula, a relatively cool pseudophotosphere (5250–11 500 K) is present in the system. The simultaneous presence of a relatively cool pseudophotosphere and high-ionization spectral lines is probably related to a disk-like structure of the pseudophotosphere. The pseudophotosphere formed very rapidly—over several weeks—during a period of increasing brightness of Z And. We infer that in 2009, as in 2006, the activity of the system was accompanied by a collimated bipolar ejection of matter (jets). In contrast to the situation in 2006, the jets were detected even before the system reached its maximum brightness. Moreover, components with velocities close to 1200 km/s disappeared at the maximum, while those with velocities close to 1800 km/s appeared.  相似文献   

14.
15.
16.
Das  Tapas  Jana  Antu  Mandal  Biswajit  Sutradhar  Arindam 《GeoJournal》2021,87(4):765-795

Urbanization produces substantial land use changes by causing the construction of different urban infrastructures in the city region for habitation, transportation, industry, and other reasons. As a result, it has a significant impact on Land Surface Temperature (LST) by disrupting the surface energy balance. The objective of this paper is to assess the impact of land-use/land-cover (LU/LC) dynamics on urban land surface temperature (LST) of Bhubaneswar City in Eastern India during 30 years (1991–2021) using Landsat data (TM, ETM + , and OLI/TIRS) and machine learning algorithms (MLA). The finding reveals that the mean LST over the entire study domain grows significantly between 1991 and, 2021due to urbanization (β coefficient 0.400, 0.195, 0.07, and 0.06 in 1991, 2001, 2011, and 2021 respectively) and loss of green space (β coefficient − 0.295, − 0.025, − 0.125 and − 0.065 in 1991, 2001, 2011 and 2021 respectively). The highest class recorded for agricultural land (49.60 km2, accounting for 33.94% of the total land area) was in 1991 followed by vegetation (41.27 km2, 28.19% of the total land area), and built-up land (27.59 km2, 18.84% of the total land area). The sharp decline of vegetation cover will continue until 2021 due to increasing built-up areas (r = − 0.531, − 0.329, − 0.538, and − 0.063 in the 1991, 2001, 2011 and 2021 respectively). Built-up land (62.60 km2, accounting for 42.76% of the total land area, an increase of 35.01 km2 from 1991) as the highest class followed by water bodies (21.57%, 32.60 km2 of the land area), and agricultural land (31.57 km2, 21.57% of the land area) in 2021. Remote sensing techniques proved to be an important tool to urban planners and policymakers to take adequate steps to promote sustainable development and minimize urbanization influence on LST. Urban green space (UGS) can help improve the overall liveability and environmental sustainability of Bhubaneswar city.

  相似文献   

17.
Wang  Xinwei  Mao  Xiang  Mao  Xiaoping  Li  Kewen 《Mathematical Geosciences》2020,52(6):783-800
Mathematical Geosciences - Study of the characteristics and classification of geothermal gradients can effectively guide the exploration and development of geothermal resources. In this paper, we...  相似文献   

18.
19.
A 30,000 yr dinocyst and pollen record from the eastern equatorial Atlantic (off Cameroon) has been investigated in order to identify land–ocean linkages during the last deglacial transition. A strong correlation between the abundance of Brigantedinium spp. and the Ca/Fe ratio during the last glacial period suggests enhanced marine productivity in association with cool seawater temperatures and nutrient input linked to coastal upwelling and/or a proximal river mouth. Dry conditions are recorded on the adjacent continent with a significant representation of open vegetation indicators and the Afromontane taxon Podocarpus. After 17 cal ka BP these indicators register a sharp decline as a result of a climatic transition from the dry/cooler conditions of the last glacial period to the wetter/warmer conditions of the deglaciation. Simultaneously, dinocysts show a significant shift from dominant heterotrophs to an increasing abundance of autotrophs, reflecting warmer conditions. Significant changes are observed during the Younger Dryas, with a return to drier conditions and higher salinities. The start of the Holocene is marked by very low-salinity conditions, reflecting optimal monsoonal conditions over west equatorial Africa. The end of the African Humid Period is observed between 6 and 5 cal ka BP, followed by significant fluctuations in both terrestrial and oceanic proxies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号