首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare-earth element distribution in the rocks and minerals of the olivinite-clinopyroxenitemelilitolite-melteigite-ijolite-nepheline syenite series was analyzed to study the evolution trends of the alkaline-ultrabasic series of the Kola province. The contents of REE and some other trace elements were determined in olivine, melilite, clinopyroxene, nepheline, apatite, perovskite, titanite, and magnetite. It was established that distribution of most elements in the rocks of the Kovdor, Afrikanda, Vuoriyarvi, and other massifs differ from that in the Khibiny ultrabasic-alkaline series, being controlled by perovskite crystallization. Primary olivine-melanephelinite melts of the minor ultrabasic-alkaline massifs are characterized by the early crystallization of perovskite, the main REE-Nb-Ta-Th-U depository. Precipitation of perovskite simultaneously with olivine and clinopyroxene results in the depletion of residual magma in rare-earth elements and formation of low-REE- and HFSE ijolite and nepheline syenite derivatives. In contrast, the formation of the Khibiny ultrabasic-alkaline series was complicated by mixing of olivine melanephelinite magma with small batches of phonolitic melt. This led to a change in crystallization order of REE-bearing titanates and Ti-silicates and accumulation of the most incompatible elements in the late batches of the melt. As a result, the Khibiny ijolites have the highest REE contents, which are accommodated by high-REE apatite and titanite.  相似文献   

2.
Results of this study of titanite samples collected from silicate rocks and apatite-nepheline-(sphene) ores from Paleozoic polyphase alkaline nepheline syenite complexes of the Khibiny and Lovozero massifs revealed the possibility of their in-situ U-Pb dating using sensitive high-resolution ion microprobe SHRIMP-II with an accuracy of 1.0-1.5%, which is comparable with that of U-Pb zircon analysis. Employing different approaches to age determination of the formation of the U-Pb system of titanites, the combined isochrons and mixing lines were plotted from the data obtained from the differentiated complex samples (121 analyses of five Khibiny samples and 52 analyses of one Lovozero sample) and apatite-nepheline ores (120 analyses of five Khibiny samples and 88 analyses of three Lovozero samples). They indicate synchronous crystallization of titanite in silicate rocks throughout the complexes: 374.1 ± 3.7 Ma for the Khibiny massif and 380.9 ± 4.5 Ma for the Lovozero massif, and attest to the later formation of phosphate-rare-metal ores: 371.0 ± 4.2 and 361.4 ± 3.2 Ma, respectively. The relatively delayed ore mineralization specific to the Lovozero massif can be accounted for the significantly lower volumes of magmatic melt and ore fluid involved, different thermal conditions, and the pattern of the investigated mineralization. As such, the obtained U-Pb data from titanite make it possible to limit significantly the time interval (most likely, not exceeding 15-20 Ma) comprising the evolution and activity of the ore-magmatic system of major agpaitic complexes, which is probably associated with plume magmatism.  相似文献   

3.
For the first time Pb isotope composition was established in Lovozero rocks and raremetal ores, which is important for identifying their sources. The world’s largest layered intrusion of agpaitic nepheline syenite-the Lovozero alkaline massif—is located near the center of the Kola Peninsula in Russia. This superlarge complex plutonic body hosts the economically important loparite and eudiallyte deposits [1]. These deposits contain immense resources of REE, Nb, Ta, Zr, and constitute a world class mineral district. The Lovozero massif belongs to the Kola ultramafic alkaline and carbonatitic province (KACP) of Devonian age. Previous bulk rock studies have shown that the initial Sr and Nd isotope ratios of Lovozero rocks plot in the depleted mantle quadrant of Sr-Nd diagrams [2]. More recently, Hf isotope data obtained by Kogarko et al. (3) confirm that the Lovozero and Khibina massifs with ?Hf between 6 and 8 are derived predominantly from a depleted mantle source. It was shown that Sr, Nd, and Hf abundances are significantly elevated in the Kola alkaline rocks, and thus their isotopic compositions are relatively insensitive to minor contamination by the overlying crustal rocks. By contrast, Pb in the KACP rocks is a much more sensitive indicator of a crustal component. In this paper we investigate the lead isotopic signature of all resentative types of Lovozero rocks (Table 1) in order to further characterize their mantle sources. The Lovozero massif consists of four intrusive phases. Rocks of phase I (mostly nepheline syenites) comprise about 5% of the total volume, phase II (urtites, foyaite, lujavrites) forms the main portion of the massif comprising 77% in volume, and phase III (eudialyte lujavrites) contributes about 18%. Country rocks are represented by Devonian effusive rocks and Archean gneisses.  相似文献   

4.
The paper presents the results of a study of the large Paleozoic ore-magmatic system in the northeastern Fennoscandian Shield comprising the Khibiny and Lovozero plutons, the Kurga intrusion, volcanic rocks, and numerous alkaline dike swarms. As follows from the results of deep drilling and 3D geophysical simulation, large bodies of rocks pertaining to the ultramafic alkaline complex occur at the lower level of the ore-magmatic system. Peridotite, pyroxenite, melilitolite, melteigite, and ijolite occupy more than 50 vol % of the volcanic-plutonic complex within the upper 15 km accessible to gravity exploration. The proposed model represents the ore-magmatic system as a conjugate network of mantle magmatic sources localized at different depth levels and periodically supplying the melts belonging to the two autonomous groups: (1) ultramafic alkaline rocks with carbonatites and (2) alkali syenites-peralkaline syenites, which were formed synchronously having a common system of outlet conduits. With allowance for the available isotopic datings and new geochronological evidence, the duration of complex formation beginning from supply of the first batches of melt into calderas and up to postmagmatic events, expressed in formation of late pegmatoids, was no less than 25 Ma.  相似文献   

5.
江南造山带湖南段中早古生代花岗质岩石对于研究早古生代构造演化以及金成矿作用具有重要的意义。位于该区中段的金鸡金矿床钻孔中新发现有两类花岗质岩石,分别为花岗岩和花岗闪长岩。对两类岩体样品进行了锆石LA-ICP-MS U-Pb测年,获得的年龄分别为(425.2±1.5)Ma和(430.6±1.5)Ma。岩石地球化学数据表明,花岗岩属I型花岗岩,其来源于地壳中变泥质岩石的部分融熔;花岗闪长岩属埃达克岩,其起源于地壳中变砂质岩石的部分融熔。Sr-Nd同位素分析显示,金鸡花岗闪长岩具有较高的(87Sr/86Sr)i(0.722369~0.722488)、较低的(143Nd/144Nd)i(0.511941~0.511990)以及εNd(t)值较低(–8.2~–7.2),并且金鸡花岗闪长岩的二阶段Nd模式年龄值为1.75~1.84 Ga,与江南造山带变质基底的二阶段模式年龄(1.65~2.14 Ga)一致。金鸡金矿床花岗岩和花岗闪长岩的岩石地球化学、年代学以及Sr-Nd同位素特征表明二者是华南早古生代陆内造山事件的产物,岩体成因及地球动力学背景的研究将有助于揭示湘东北地区金矿形成的地球动力学机制。  相似文献   

6.
The Abbott Unit (∼508 Ma) and the Vegetation Unit (∼475 Ma) of the Terra Nova Intrusive Complex (northern Victoria Land, Antarctica) represent the latest magmatic events related to the Early Paleozoic Ross Orogeny. They show different emplacement styles and depths, ranging from forcible at 0.4–0.5 GPa for the Abbott Unit to passive at ∼0.2 GPa for the Vegetation Unit. Both units consist of mafic, felsic and intermediate facies which collectively define continuous chemical trends. The most mafic rocks from both units show different enrichment in trace element and Sr-Nd isotopic signatures. Once the possible effects of upper crustal assimilation-fractional crystallisation (AFC) and lower crustal coupled AFC and magma refilling processes have been taken into account the following features are recognised: (1) the modelled primary Abbott Unit magma shows a slightly enriched incompatible element distribution, similar to common continental arc basalts and (2) the modelled primary Vegetation Unit magma displays highly enriched isotope ratios and incompatible element patterns. We interpreted these major changes in magmatic affinity and emplacement style as linked to a major change in the tectonic setting affecting melt generation, rise and emplacement of the magmas. The Abbott Unit mafic melts were derived from a mantle wedge above a subduction zone, with subcontinental lithospheric mantle marginally involved in the melting column. The Vegetation Unit mafic melts are regarded as products of a different source involving an old layer of subcontinental lithospheric mantle. The crustal evolution of both types of mafic melts is marked by significant compositional contrasts in Sr and Nd isotopes between mafic and associated felsic rocks. The crustal isotope signature showed an increase with felsic character. Geochemical variations for both units can be accounted for by a similar two-stage hybridisation process. In the first stage, the most mafic magma evolved mainly by fractional crystallisation coupled with assimilation of metasedimentary rocks having crustal time-integrated Sr and Nd compositions similar to those of locally exposed metamorphic basement. The second stage involves contaminated products mixing with independently generated crustal melts. Petrographic, geochemical and isotope data also provide evidence of significant compositional differences in the felsic end-members, pointing to the involvement of metaigneous and metasedimentary source rocks for the Abbott granite and Vegetation leucogranite, respectively. Received: 31 March 1998 / Accepted: 3 May 1999  相似文献   

7.
本文对华北克拉通晚中生代和新生代碱性玄武质岩石中的单斜辉石巨晶进行了主、微量元素和Sr-Nd同位素的综合研究,发现晚中生代和新生代单斜辉石巨晶存在明显的主、微量元素和同位素组成上的差异。新生代单斜辉石巨晶有Al-普通辉石和次透辉石两类;而中生代单斜辉石巨晶只有Al-普通辉石。新生代单斜辉石SiO_2含量高、REE配分型式为上凸型、LILE和放射性元素含量高,并具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成;而中生代单斜辉石SiO_2含量低、REE配分型式为LREE富集型、LILE和部分HFSE以及放射性元素含量低,并具有比寄主碱性玄武岩稍富集的Sr和Nd同位素组成;巨晶的结构、矿物成分和地球化学特征,以及Mg-Fe在熔体与单斜辉石间的分配状况皆说明,新生代碱性玄武岩中单斜辉石巨晶是碱性玄武岩浆在高压下结晶的,因此二者是同源的;而中生代单斜辉石巨晶是被寄主岩浆偶然捕获的捕虏晶,是不同源的。华北新生代单斜辉石巨晶存在于碱性玄武岩和拉斑玄武岩中,它们具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成,说明即使是碱性玄武岩也不能完全代表软流圈来源的原始岩浆,其在上升过程中或多或少存在同位素组成富集的物质的混入。同时,拉斑玄武岩不是碱性玄武质岩浆直接结晶分异的产物,亦不是完全由部分熔融程度的不同造成的。拉斑玄武岩中存在岩石圈地幔物质的贡献或是岩浆房内碱性玄武质岩浆受地壳混染作用的结果。  相似文献   

8.
The paper presents data on the structure, composition, and age of granitoid associations (Tokhtogeshil’skii Complex) composing the Kharanur and Sharatologoi polychronous plutons in the northern part of the Ozernala zone in western Mongolia. The Tokhtogeshil’skii Complex was determined to consist of a number of independent magmatic associations, which were formed at 540–450 Ma, within three age intervals (540–520, 510–485, and 475–450 Ma), have different composition, were derived from different sources, and were emplaced in different geodynamic environments. During the first, island-arc stage (540–520 Ma), high-Al plagiogranites were produced, which belong to tonalite-plagiogranite (531 ± 10 Ma) and diorite (529 ±6 Ma) associations in the Kharanur pluton, low-Al plagiogranites of the tonalite-plagiogranite association (519 ± 8 Ma) in the Sharatologoi pluton, and rocks of the Khirgisnur peridotite-pyroxenite-gabbronorite complex (Kharachulu and Dzabkhan massifs). The rocks of the diorite and plagiogranite associations of the Kharanur pluton have ɛNd(T) from +7.9 to +7.4, TNd(DM) = 0.65 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039. The plagiogranites of the Sharatologoi pluton (tonalite-plagiogranite association) are characterized by ɛNd(T) from +6.5 to +6.6, TNd(DM) = 0.73–0.70 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039, which suggest predominantly juvenile subduction sources of the parental melts at a subordinate role of ancient crustal material. During the second, accretionary stage (510–485 Ma), low-Al plagiogranites of the diorite-tonalite-plagiogranite association of the Sharatologoi pluton (494 ± 10 Ma, M type) were formed. The Sr-Nd isotopic characteristics of these rocks ɛNd(T) = +6.6, (87Sr/86Sr)0 = 0.7039 are analogous to those of the plagiogranitoids of the early type. This suggests that the melted sources were similar in composition. During the third, postcollisional stage (475–450 Ma), rocks of the diorite-granodiorite-granite association were formed (459 ± 10 Ma, type I) in the Kharanur pluton. These rocks have ɛNd(T) = +5.1, TNd(DM) = 0.74 Ga, and (87Sr/86Sr)0 = 0.7096. The parental melts were supposedly derived by means of partial melting of “the Caledonian” juvenile crust with the addition of more ancient crustal material.  相似文献   

9.
The Burma Terrane is a microplate at the eastern edge of the Tibetan-Himalayan orogen, the origin of which remains poorly understood. Its basement comprises metamorphic and igneous rocks forming the Wuntho-Popa Arc (WPA) and has been correlated with Tibetan, Gondwana or Transtethyan rocks. Yet, little is known about the magmatic history of the WPA. We report elemental and Sr-Nd isotopic compositions of magmatic rocks, crystallization (zircon and apatite U-Pb) and exhumation (apatite fission-track) ages from rocks and river sands, and structural measurements from the Wuntho Ranges, central Myanmar, where the WPA is best exposed. We show that the WPA in the Wuntho Ranges is characterized by two magmatic events at 108–90 Ma and 46–32 Ma. Magmatism is subduction-related for both events, characterized by depleted Nd and Sr isotopic compositions, with more enriched values with time. Apatite fission-track data suggest arc exhumation during the 39–22 Ma time interval, partly overlapping with the last magmatic event. Structural data indicate NW-SE-striking tilting, folding, and thrusting that we associate with at least two phases of deformation, in the Cretaceous and the late Paleogene. Correlating the WPA with Tibetan, Gondwana or Transtethyan rocks based on its magmatic history remains ambiguous; however, models arguing for a Transtethyan origin for the WPA are most compatible with our results combined with available Burmese geological data.  相似文献   

10.
This work describes the in situ analysis of loparite [(Na,REE)Ti2O6], a perovskite group mineral with extremely low Rb/Sr ratios and high rare earth contents, by LA-(MC)-ICP-MS for the determination of U–Pb ages together with Sr and Nd isotopic composition. The reliability of these data were validated by analysis of a loparite standard by TIMS solution methods. Data are given for loparite from the Lovozero and Khibiny peralkaline complexes of the Kola Alkaline Province (Russia). For Lovozero loparite the Tera–Wasserburg intercept age for 15 loparites analysed is 373 ± 11 Ma, and the weighted 207Pb corrected 206Pb/238U age is 373 ± 2 Ma. For Khibiny loparite, the intercept age for 5 loparites analysed is 375 ± 10 Ma, and the weighted 207Pb corrected 206Pb/238U age is 374 ± 3 Ma. The common Pb compositions for Lovozero and Khibiny loparites are identical i.e. 207Pb/206Pb = 0.898 ± 0.009 and 0.898 ± 0.007, respectively. The 87Sr/86Sr initial ratios of Lovozero loparite range from 0.703552 to 0.703682 (av. 0.703611), and εNd (t370) from + 3.8 to + 4.4 (av. + 4.0). The 87Sr/86Sr initial ratios of Khibiny loparite range from 0.703560 to 0.703871, and εNd (t730) from + 4.0 to + 4.8. Our data indicate that in situ LA-(MC)-ICP-MS analysis of loparite provides accurate and precise estimates of the intrusion ages and isotopic composition of peralkaline rocks.  相似文献   

11.
粤西阳春中生代钾玄质侵入岩及其构造意义:   总被引:28,自引:0,他引:28  
粤西阳春地区马山二长闪长岩强烈富集K、Sr和LREE,(87Sr/86Sr);≈0.7046,εNd(t)≈+1;岗尾-轮水岩体较富集K、Rb、Th和LREE,(87Sr/86Sr):≈0.7063,εNd(t)≈-2;石岩体较富集Sr,K、Rb、Th和LREE相对较低,(87Sr/86Sr);=0.7084~0.7089,εNd(t)≈-6。马山岩体来源于大离子亲石元素(ULE)和LREE富集的交代地幔;岗尾-轮水岩体来自于放射成因Sr、Nd同位素组成略高或交代时间略早的富集交代地幔,并且经历了明显的结晶分异作用;石岩体则很可能是前存下地壳底垫基性岩重熔形成的。从早侏罗世到早白垩世,南岭西部的岩浆成分和源区的规律性变化反映了区域软流圈地幔上涌和岩石圈伸展-拉张-减薄的演化过程。  相似文献   

12.
The REE distribution patterns and Nd whole-rock and mineral isotope ratios of the Kingash ultramafic-mafic massif enabled us to propose a multistage history for its evolution at 1410 and 875 Ma. These stages reflect the magmatic evolution of the Siberian paleocontinent margin during the Late Precambrian. The age of metamorphism of the massif during collision and accretion in the Early Paleozoic (∼500 Ma) was obtained based on a Sm-Nd mineral isochron from rheomorphic veined albitite. The Nd and Sr isotopic compositions of rocks from the Kingash massif suggest mantle sources for picritic and basic magmas, which are thought to have originated by mixing of different proportions of depleted (PREMA or DM) and enriched (EM) melts. The initial isotope ratios of the parental melts transformed during interaction with Sr-rich material from the host metasedimentary complexes.  相似文献   

13.
The nepheline syenites and foidolites of the world’s largest Lovozero and Khibiny allkaline massifs contain numerous xenoliths of intercalating olivine basalts, their tuffs, tuffites, and quartzitosandstones that experienced more (in the Khibiny Massif) or less (in the Lovozero Massif) intense thermal-metasomatic transformation. In terms of geological, petrographical, and petrochemical features, the unaltered rocks of the Lovozero Formation can be ascribed to the rocks of the trap formation, while all wealth of the rocks formed during their contact-metasomatic alteration (sekaninaite-anorthoclase, annite-anorthoclase, fayalite-anorthoclase, rutile-freudenbergite-anorthoclase, topaz-andalusite-anorthoclase, and others) was formed due to alkaline metasomatism. The Fourier analysis of the color variation curves for the volcanogenic-sedimentary rocks revealed the identity between bedding of initial tuffs (tuffites) and banding of their fenitized analogues.  相似文献   

14.
磷灰石是常见的副矿物,具有较高的Sr-Nd含量和较低的Rb含量,对其微区Sr-Nd同位素组成的准确测定可以为精细地质作用过程的探讨提供重要的地球化学信息.激光剥蚀-多接收器电感耦合等离子体质谱(LA-MC-ICPMS)具有分析速度快、分析精度高和空间分辨率高的特点,特别适合大量细颗粒磷灰石样品的Sr-Nd同位素分析,而同位素干扰的精确扣除和仪器质量歧视校正是原位微区分析准确获得Sr-Nd同位素比值的关键.本文利用LA-MC-ICPMS技术,综合最新发表的Kr、Rb、稀土二价离子及钙聚合物对Sr同位素的干扰扣除方法和Sm对Nd同位素的干扰扣除方法,对仪器的质量歧视进行了校正,建立了磷灰石原位Sr-Nd同位素分析方法.用此方法对一个磷灰石国际标准样品Durango和两个实验室标准Apatite 1和PE进行了详细的Sr-Nd同位素测定,结果表明,对Sr-Nd含量足够高的磷灰石样品可以准确地获得其Sr-Nd同位素组成,测试结果与文献报道值或热电离质谱(TIMS)测试值在误差范围内一致,Sr同位素的测试精度<0.015% (2SD),Nd同位素的测试精度<0.005% (2SD),达到了国际同类实验室水平;且三个磷灰石标准样品同位素组成较为均一,都是理想的原位Sr-Nd同位素分析参考物质.  相似文献   

15.
西藏中部拉萨地块大规模早白垩世花岗岩类的岩浆源区和岩石成因迄今尚未得到很好约束,对这些问题的深入理解将有助于揭示拉萨地块白垩纪时期的岩浆作用过程及成矿背景。本文报道了中部拉萨地块代表性花岗岩基——措勤麦嘎岩基的锆石U-Pb年代学、全岩元素地球化学、Sr-Nd同位素和锆石Hf同位素数据。本文锆石U-Pb定年结果表明,麦嘎岩基花岗质岩主要侵位于122±1Ma和113±2Ma,闪长质包体与后者同期(113±2Ma)。122±1Ma花岗质岩属I型弱过铝质高钾钙碱性系列,(87Sr/86Sr)i值高(0.7147),全岩εNd(t)(-12.0)和锆石εHf(t)(-15.7~-11.1)为较大的负值,表明其很可能来源于古老下地壳物质的重熔。113±2Ma寄主花岗质岩为I型偏铝质-弱过铝质高钾钙碱性系列,相对于122±1Ma花岗质岩石,其(87Sr/86Sr)i比值偏低(0.7094~0.7156)、全岩εNd(t)值(-12.1~-7.3)和锆石εHf(t)值(-11.1~0.1)较高,很可能来源于古老下地壳物质的部分熔融,并含有更多幔源物质。闪长质包体(113±2Ma)为偏铝质中-高钾钙碱性系列,以变化范围大的(87Sr/86Sr)i(0.7058~0.7105)、负的全岩εNd(t)值(-10.7~-9.8)及负的锆石εHf(t)值(-14.0~-5.6)为特征,可能是古老富集岩石圈地幔物质部分熔融的产物或亏损地幔物质经历强烈地壳混染作用的结果。在目前已有资料条件下(缺乏同期基性岩石的相关数据),本文暂将麦嘎岩基113±2Ma寄主花岗质岩及同期闪长质包体解释为镁铁质岩浆与长英质岩浆发生不同程度岩浆混合作用的产物,这一解释可能对中部拉萨地块同期花岗类的岩石成因具普遍意义。麦嘎岩基及中部拉萨地块同期岩浆岩约113Ma幔源物质增加现象,可能是南向俯冲的班公湖-怒江洋壳岩石圈板片断离的结果。  相似文献   

16.
U. Kramm  L. N. Kogarko 《Lithos》1994,32(3-4):225-242
Nd and Sr compositions of the highly evolved agpaitic nepheline syenites and associated ijolites and carbonatites from the Khibina and the Lovozero alkaline centres define three magma sources. Isotopes of the voluminous nepheline syenites and ijolites of Khibina intrusions III, IV, V, VI and VII as well as of nepheline syenites of Lovozero lie on the Kola Carbonatite Mixing Line which is close to the “mantle array” defined by the components “bulk earth” and “prema” on a Sr---Nd plot. The Khibina carbonatites and associated silicate rocks of intrusion VIII, which have more radiogenic Sr, did not evolve from the same parent magma as the nepheline syenites.

Isotopic constraints exclude a pre-enrichment of Rb, Sr, Sm and Nd in the lithospheric mantle below Kola over more than 10 Ma prior to the crystallization of the magmas. A formation of the melts involving major participation of the Precambrian crust of the Baltic Shield is also excluded.

The lack of significant Eu anomalies in the Lovozero nepheline syenites gives evidence that the agpaitic magmas in the Kola region did not form from basaltic liquids by fractional crystallization of plagioclase or anorthoclase at crustal levels. A formation from nephelinite or nepheline benmoreite magmas at mantle pressures is more likely, possibly by dynamic flow crystallization.

Enrichment factors suggest that large-ion lithophile and high field-strength elements as Ta, La, Nb and Zr, which are highly concentrated in the agpaites, were scavenged from mantle volumes of some 100,000 km3. An enrichment of these elements prior to magma formation may have been performed by volatile transfer.

The well-defined whole-rock isochrons of the Khibina III–VII and the Lovozero agpaites of c. 370 Ma date the magma separation for the different intrusion, if these melts are cogenetic and formed by fractional crystallization in a Khibina and a Lovozero magma chamber. If, however, Rb and Sr were collected by a process of volatile transfer, and the initial Sr isotopic compositions of the two distinguished agpaite suites are, therefore, averages of the sampled mantle volumes, the Rb---Sr whole-rock isochron ages of c. 370 Ma would date this process of element collection. The concordance of the whole-rock ages with the mineral ages of Khibina and Lovozero samples is then further evidence for the short period between magma genesis, intrusion and crystallization.  相似文献   


17.
The Sr-Nd isotopic ratios of selected post-collisional, calc-alkaline, I-type granitoids from the Pangeon pluton, intruding the lower tectonic unit (LTU) in the Southern Rhodope in the Miocene, support the existence of two types of granitoids (PTG porphyritic tonalite granodiorite and MGG biotite granodiorite to two-mica granite) unrelated by crystal fractionation and likely derived by partial melting of the same source under different P-T conditions. The Sr-Nd isotopic ratios of mafic enclaves in the granitoids as well as metamorphic rocks from the LTU have also been determined. At 22 Ma, the IRSr range between 0.706850 and 0.708381, whereas the εNd(22) range from –3.86 to –1.05, with no relationship to granitoid types. The relationships between Sr and Nd isotopes as well as these isotopes and SiO2 provide evidence of contamination of mafic melts by interaction with crust during magma differentiation. Both partial melting and AFC processes (r = 0.2) may account for compositional variations in the Pangeon magmas. The mafic enclaves display IRSr from 0.706189 to 0.707139, and εNd(22) from –2.29 to –1.94, similar to the granitoids, supporting the hypothesis of a common origin. Amphibolites inferred to be subduction-enriched metabasalts under-plated crust during old subduction can represent the source of the Pangeon melts. The TDM of the Pangeon granitoids is in the range 0.7–1.1 Ga for the inferred extraction age of the LILE-enriched subcontinental lithospheric mantle source. The upper crustal geochemical signatures and the relatively small isotopic composition of the Pangeon granitoids make these rocks similar to the coeval eastern-Mediterranean lamproites emplaced within the same geodynamic setting; this prompts similar melt sources. Lastly, the Pangeon granitoids display geochemical characteristics, isotopic ratios, and TDM also similar to other Tertiary magmatic rocks from the Southern Rhodope and Biga peninsula, western Anatolia, suggesting a similar tectonic environment and co-magmatic evolution throughout the area.  相似文献   

18.
武当地块西部顺层侵位了大量的基性岩席。本文对其进行的岩石学、地球化学和Sr、Nd同位素等特征研究表明,该基性岩席群的岩浆属于大陆拉斑玄武岩系列,来源于混合异常大陆岩石圈地幔型源区,为武当地块裂解和中古生代时南秦岭地区曾发生大规模的地幔岩浆底侵及壳幔相互作用重要标志之一。此外,该基性岩席群的岩石地球化学特征与勉略地区玄武岩及变辉绿岩总体的特点具有较大的一致性,结合该基性侵入岩席群的形成时代(401—407Ma)、武当地块伸展构造(425—260Ma)与勉略带火山岩(230Ma)同位素年代学的差异,武当地块西部基性岩席群很可能是由于勉略洋拉开前地幔柱活动使大陆岩石圈拉伸减薄发生拆离、深部岩浆上涌的结果。因此,它们应该是勉略洋打开的早期阶段在武当地块区的响应。  相似文献   

19.
The paper presents new data on age, geochemistry, and Sr and Nd isotope composition of rocks from the Akatui massif and comagmatic rocks from the lower unit of the Kailas Formation (Akatui volcano-plutonic association), localized within the Aleksandrovskii Zavod depression. The amphibole 40Ar/39Ar age date the monzogabbro of the early phase of the Akatui massif at 154.8 ± 4.4 Ma; the monzonite of the main phase yields a 40Ar/39Ar age of 160.7 ± 3.9 Ma, and the shoshonite basalt of the lower unit of the Kailas Formation yields a 40Ar/39Ar age of 161.5 ± 1.7 Ma. The leading petrogenetic mechanism for the Akatui volcano-plutonic association is crystal fractional differentiation of melts with minor crustal contamination, which can be suggested from the mineralogical and petrographic features and geochemical and isotope characteristics of rocks. The geochemical data for the Akatui volcano-plutonic association show LILE, LREE, U, Th, and Pb enrichment with a characteristic depletion in high-field strength elements (HFSE), such as Nb and Ti. They are also depleted in P. Sr-Nd isotope data (87Sr/86Sr(160 Ma) = 0.70642-0.70688 and £Nd(160 Ma) = − 0.6 to − 2.2) suggest an EMII-type mantle source and could also indicate a negligible degree of crustal contamination in the evolved melts.  相似文献   

20.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号