首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Groundwater in Farashband plain, Southern Iran, is the main source of water for domestic and agricultural uses. This study was carried out to assess the overall water quality and identify major variables affecting the groundwater quality in Farashband plain. The hydrochemical study was undertaken by randomly collecting 84 groundwater samples from observation wells located in 13 different stations covering the entire plain in order to assess the quality of the groundwater through analysis of major ions. The water samples were analyzed for various physicochemical attributes. Groundwater is slightly alkaline and largely varies in chemical composition; e.g., electrical conductivity (EC) ranges from 2314 to 12,678 μS/cm. All the samples have total dissolved solid values above the desirable limit and belong to a very hard type. The abundance of the major ions is as follows: Na+ > Ca2+ > Ma2+ > K+ and Cl? > SO4 2– > HCO3 ?. Interpretation of analytical data shows three major hydrochemical facies (Ca–Cl, Na–Cl, and mixed Ca–Mg–Cl) in the study area. Salinity, total dissolved solids, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purposes. Based on the US salinity diagram, most of samples belong to high salinity and low to very high sodium type.  相似文献   

3.
4.
The Goushti iron deposit from Dehbid area located in the Sanandaj-Sirjan metamorphic Belt (SSB), SW Iran is hosted by the Early Mesozoic silicified dolomite. Mineralized zones are lithostructurally controlled and oriented NW-SE parallel to the Zagros Orogenic Belt (ZOB). Magnetite, the major ore mineral, occurs as open space fillings and is accompanied by the secondary mineral phases hematite, goethite and martite. Gangue minerals mainly include quartz, dolomite and K-feldspar are associated with minor hydrosilicates. Calc-silicates such as wollastonite and diopside, minerals typical of skarns, are virtually absent from the ore zones. Fe2O3 content in the mineralized zones varies in the range of 38–75 wt%. The concentrations of Au, Cu, P, Ti, Cr and V as well as Co/Ni, Cr/V, (LREE)/(HREE), Eu/Sm and La/Lu values and Eu-Ce anomalies of the studied ores indicate that the Goushti deposit is a hydrothermal magnetite type. The subvolcanic rhyolite and basalt in this area are regarded as the source of iron and heat in the mineralizing system. The fluid inclusion data showed that magnetite deposited from the ore-bearing fluid with salinities 1–7 wt% NaCl equivalent at temperatures of 130–200 °C. A decrease in temperature and pressure, supplemented by fluid mixing, is the major controlling factor in iron oxide precipitation. The field relationships and mineralogical–geochemical characteristics of iron ores indicate that the Goushti hydrothermal deposit could not be classified as a member of the IOCG (Iron Oxide-Copper-Gold) deposits.  相似文献   

5.
Sungun mine is the largest open-cast copper mine in northwest of Iran and is in the primary stages of extraction. The influence of mining activity on the quality of regional groundwater has been taken in to consideration in this study. Accordingly, sampling was done from 22 springs in the study area. The concentrations of major anions and cations as well as Al, Cu, Cd, Cr, Fe, Mn, and Zn were determined for all 22 spring samples in mid-August 2005. The results showed that the concentrations of most of these elements were below the USA Environmental Protection Agency (EPA) limits; however, Al and Fe concentrations are considered to be more than limits in a couple of samples. Despite the fact that geological formations are highly weathered and fractured, the dissolution of minerals within the study area is low. This may be justified by the relatively high alkalinity of local underground water which keeps metals in solid phase and does not let them enter dissolved phase. Additionally, this may be attributed to the high velocity of groundwater flows, which do not give enough time for minerals to dissolve. Correlation coefficients among water chemistry components were determined and the weighted-pair group method was chosen for cluster analysis. Accordingly, high correlation among Al, Fe and Cr, Cd ,and Cu, sodium absorption ratio (SAR) and Na as well as total hardness (TH), Ca, and Mg were observed. The chemical characteristics of water compositions on the basis of major ion concentrations were evaluated on a Schoeller and Piper diagram. Accordingly, the dominant type of water in the region is considered to be Ca-HCO3 (calcium-bicarbonate type). However, this type of water is also rich in Na, K, and especially Mg. Regarding Schoeller diagram, the current status of local underground water is good for drinking purposes. By commencing mining excavation with designed capacity in near future, the minerals will come into contact with air and water resulting in dissolution, especially in ponds, which, in turn, will increase the concentration of toxic metals in groundwater. Considering future uses of this water including for drinking, irrigation, industrial purposes, etc., precautions must be taken in to consideration.  相似文献   

6.
Multivariate statistical techniques, such as cluster analysis (CA), factor analysis (FA), principal component analysis (PCA), and discriminant analysis (DA), were applied for the evaluation of variations and the interpretation of a large complex groundwater quality data set of the Hashtgerd Plain. In view of this, 13 parameters were measured in groundwater of 26 different wells for two periods. Hierarchical CA grouped the 26 sampling sites into two clusters based on the similarity of groundwater quality characteristics. FA based on PCA, was applied to the data sets of the two different groups obtained from CA, and resulted in three and five effective factors explaining 79.56 and 81.57% of the total variance in groundwater quality data sets of the two clusters, respectively. The main factors obtained from FA indicate that the parameters influencing groundwater quality are mainly related to natural (dissolution of soil and rock), point source (domestic wastewater) and non-point source pollution (agriculture and orchard practices) in the sampling sites of Hashtgerd Plain. DA provided an important data reduction as it uses only three parameters, i.e., electrical conductivity (EC), magnesium (Mg2+) and pH, affording more than 98% correct assignations, to discriminate between the two clusters of groundwater wells in the plain. Overall, the results of this study present the effectiveness of the combined use of multivariate statistical techniques for interpretation and reduction of a large data set and for identification of sources for effective groundwater quality management.  相似文献   

7.
This study describes the groundwater quantity and quality conditions in the Damghan aquifer in Iran. The quantitative analysis of data obtained from observation wells indicates overexploitation of groundwater during recent years, which has resulted in deterioration of water quality. The mean water level has declined about 7.4 m between years of 1966 and 2010. The hydrochemical facies of water collected from sampling wells were investigated though Piper and Chadha diagrams, and the general dominant type of water in the study area was determined as Na-Cl. The quality assessment examined the suitability of groundwater for drinking and irrigation purposes. Compared to the World Health Organization (WHO) guidelines for drinking water, all regions were found to have unpotable groundwater. Furthermore, unsuitability of groundwater for agricultural applications due to high salinity was observed through analysis of major quality indicators. The saltwater intrusion was investigated by ionic ratio analyses and was determined to be the main factor contributing to high salinity and deterioration of the groundwater quality in the Damghan basin.  相似文献   

8.
The Wajid Group is a Cambro-Permian sedimentary succession in southwest Saudi Arabia. This group is a well-known groundwater aquifer in the Wadi Al-Dawasir and Najran areas. The group also represents siliciclastic hydrocarbon reservoirs in the Rub' Al-Khali Basin. The Wajid Group is exposed in an area extending from Wadi Al-Dawasir southward to Najran city. This study aims to map and characterize the lineament traces of the Wajid Group outcrops. Landsat-8 OLI/TIRS satellite images with 30-m resolution, Spot-5 satellite images with 2.5-m resolution and SRTM digital elevation models (DEM) with 30-m resolution were used for lineament trace detection. Those lineament traces supplemented by aeromagnetic lineaments detected from reduced to pole magnetic anomaly map of the studied outcrop. Multi-scale lineament trace maps were generated, and the lineament datasets, including orientation and length, were analyzed statistically. Eight lineament trace trends were identified including NW-SE, NNW-SSE, N-S, NNE-SSW, NE-SW, ENE-WSW, E-W, and WNW-ESE. The northerly, northwesterly, and northeasterly trending lineament traces are predominant. The lineament trace lengths are generally followed the power law distribution. The lineament trace trends were validated through field investigation of the Wajid Group outcrop. The reported outcrop fracture trends are consistent with major lineament trace trends. Lineaments within the Wajid Group outcrop are also consistent with those of the southern portion of the Arabian Shield. The results of this study provide insight into the tectonic origin of the Wajid Group outcrop lineaments, and understanding of the lineaments distribution which can help to predict the fluid flow behavior within the groundwater fractured aquifers or hydrocarbon fractured reservoirs in Rub’ Al-Khali Basin.  相似文献   

9.
The Nasirabad manganese occurrence is located to the south of the Neyriz in the Fars province. Structurally and lithologically, this occurrence lies in the southwest part of the Zagros Thrust Belt and was deposited as Mn-nodules and interconnected ore-bearing interlayer's with radiolarite cherts in the vicinity of the Neyriz ophiolites. The present work deals with the geology and geochemistry of the Nasirabad manganese occurrence with a discussion of its genesis. High Mn/Fe (average 18.85) and high Ba (average 28,830 ppm) with low Pb (2.0 ppm) and LREE > HREE, Lan/Ndn (average 4.5), Dyn/Ybn (average 1.2) and negative Eu anomaly suggest distal hydrothermal source. The Co/Zn (average 2.2), Ce/La ratio (average 0.67) and trace element discrimination diagrams indicate hydrothermal–hydrogenous processes. Y/Ho ratio (average 24.85) and strong positive correlation coefficient between major oxides and some high field strength elements (HFSE) like; TiO2 vs Fe2O3 (r = 0.98), Al2O3 vs Zr (r = 0.97), Al2O3 vs Fe2O3 (r = 0.98), Zr vs K2O (r = 0.98), Nb vs TiO2 (r = 0.92), Th vs Fe2O3 (r = 0.76), Th vs MgO (r = 0.86) reveal the presence of volcaniclastics and (or) terrigenous detritals of mafic composition being deposited into the depositional basin. It seems that intermittent interlayering of mafic detrital material derived from volcanic eruption of the Neyriz island arc directly affected the physicochemical conditions of hydrothermal ore precipitation in this basin and consequently the Nasirabad manganese ores represent hydrothermal–hydrogenous geochemical characteristics. The Nasirabad is an example of non-sulphidic, oxic Mn-mineralization. Similar trend between the enrichment and depletion of some bioessential elements (e.g., Mn, As, Ba, Sr, Co, Ce) might have been resulted from selective sequestering of metal ions by microbial processes and hence hydrogenous characteristics may also be the result of biogenetic processes. Moreover the high dilution of distal hydrothermal exhalations by sea water cannot be ruled out.  相似文献   

10.
The chemical analysis of 83 water wells in the Marand area, Azarbaijan Province NW of Iran was evaluated to determine the hydrogeochemical processes and ion concentration background in the region. Over the entire area, the dominated hydrochemical types are Ca? +?Mg?+?SO4?+?Cl, Ca?+?SO4, Na?+?Cl and Ca?+?Mg?+?HCO3. Based on the total hardness, the softness of the groundwater is determined. According to electrical conductivity (EC) and sodium adsorption ratio (SAR), the most dominant classes are C3?CS1, C3?CS2, C4?CS2 and C2?CS1. The major ion concentrations are below the acceptable level for drinking water. The groundwater salinity hazard is medium to high, but the Na hazard is low to medium; with regard to irrigation water, the quality is low to medium. So, a drainage system is necessary to avoid the increase of toxic salt concentrations.  相似文献   

11.
12.
13.
In this paper we tried to identify the main tectonic lineaments in Eastern Iran including Lut block and Sistan suture zone from the airborne geomagnetic data together with tilt filter. As the map of obtained lineaments from airborne geomagnetic data has been studied, four distinct set of lineaments has been identified: (i) north–south, (ii) east–west, (iii) northeast–southwest, and (iv) northwest–southwest that are concurrently with structural zones and area’s big faults. New faults which have been identified in this investigation are lineaments with trend northeast–southwest and east–west. The depth of these lineaments has been calculated through Euler modeling. Magnetic lineaments trending east–west have the most depth, so these lineaments are related to basement faults.  相似文献   

14.
The Janah alluvial aquifer is located in southern Iran with an arid climate. The type of groundwater in this aquifer is dominantly of sodium chloride and total dissolved solid of groundwater samples range from 1.63 to 335 g/L which confirms that groundwater quality has been severely degraded by salinization. Hydrogeochemical and isotopic investigations were conducted to identify the source of salinity. Total dissolved solids and major ion concentrations were measured at 51 selected sampling sites including springs, wells and surface waters. In addition stable isotopic composition (oxygen-18 and deuterium) was measured in 6 sampling points.The study indicates that the sources of salinity of the Janah aquifer include dissolution of salt diapir and evaporite rocks, a geothermal spring and intrusion of the river water which function individually or together in different parts of the aquifer. Based on the hydrogeochemical and geological studies conceptual flow models were prepared for different parts of the aquifer which illustrate how each source of salinity deteriorates the quality of the alluvial aquifer. We proposed few remediation methods including construction of cemented channel and sealed basins to improve groundwater quality. These methods would prevent infiltration of low quality water into the alluvial aquifer.  相似文献   

15.
Groundwater is one of the major sources of water in Isfahan. Efficient management of these resources requires a good understanding of its status. This paper focuses on the hydrochemistry and also it wants to assess the nitrate concentration in irrigation groundwater of Isfahan suburb. All the groundwater samples are grouped into three categories, including Na-Cl + Ca-Cl (63 %), Na-SO4 + Ca-SO4 (23 %) and Ca-HCO3 (14 %). According to the EC and SAR, the most dominant classes are C3S1, C4S2 and C4S3. 55 % of samples indicate very high salinity and medium to very high alkalinity that is not suitable for irrigation. 84 % of the groundwater samples show nitrate contents higher than HAV (13 mg l?), while more than 25 % exceeded the maximum contamination level (44.27 mg l?) according to EPA regulations. The horizontal and vertical distribution patterns of nitrate in groundwater samples show a surficial origin for nitrate contamination. The high nitrate content can be attributed to the agricultural activities along with domestic sewage and industrial wastewaters in populated area. Based on results, using high nitrate groundwater for irrigation can minimize the requirement for inorganic fertilizers and reduce the cost of cultivation and nitrate contamination.  相似文献   

16.
Hydrogeochemical assessment of groundwater in Isfahan province, Iran   总被引:2,自引:2,他引:0  
Groundwater quality in five catchment areas in Isfahan province of Iran is assessed by measuring physicochemical parameters including major cation and anion compositions, pH, total dissolved solid, electrical conductivity and total hardness. For this purpose, 567 piezometric well samples were collected in October 2007. The abundance of major ions in four of the catchment areas including Gavkhuni, Ardestan, Salt lake and Central Iran desert basins is similar and follows Cl??>?SO4 2??>?Na+?>?HCO3 ??>?Ca2+?>?Mg2+?>?K+?>?CO3 2? trend, while in the fifth basin (Karoon), the trend changes into HCO3 ??>?Ca2+?>?Cl??>?SO4 2??>?Mg2+?>?Na+?>?K+?>CO3 2?. In general, four water facies are determined and it is shown that alkali elements and strong acids are dominating over alkaline earth and weak acids. Statistical analysis including Mann?CWhitney U test indicate that physicochemical parameters in three of the five investigated basins [Gavkhuni, Ardestan and Central Iran desert (CID)] are similar, while Karoon and salt lake basins display different characteristics. The result indicate that groundwater west of the province is suitable for irrigation, while in the central and eastern parts of the province the groundwater loses its quality for this purpose. It is concluded that mineral dissolution and evapotranspiration are the main processes that determine major ion compositions.  相似文献   

17.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:3,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

18.
At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this regard,contamination of groundwater resources to heavy metals,especially arsenic,is one of the most important hazards that threaten human health.The present study aims to develop an approach for presenting the groundwater quality of Sirjan city in Kerman Province,based on modern tools of spatial zoning in the GIS environment and a fuzzy approach of evaluating drinking water in accordance with the standards of world health organization(WHO).For this purpose,qualitative data related to 22 exploitation wells recorded during 2002 to 2017 were used.In addition,fuzzy aggregate maps were prepared in two scenarios by neglecting and considering arsenic presence in groundwater resources.The results showed a decrease in groundwater quality over time.More specifically,neglecting the presence of arsenic,in 2002,all drinking wells in the area were located in an excellent zone,while in 2017 a number of operation wells were located in the good and medium zone.Also,the final map,considering the presence of arsenic as a limiting factor of drinking water,indicated that parts of the southern regions of the plain would be the best place to dig wells for drinking water.Therefore,the use of new methods can contribute significantly to the usage of groundwater aquifers and provide a good view of the aquifer water quality.  相似文献   

19.
The Fars area is the main target for Permian gas exploration in the Zagros fold belt. It contains approximately 15 percent of the world’s proven gas reserves. The geometrical characteristics of the folded structures change dramatically across the N–S trending Gavbandi High. We used seismic profiles, well data, magnetic survey information and field observations to show that thickness variation of the sedimentary pile inherited from basement geometry is the main reason behind structural style variation in this area which occurred during the Zagros folding. Differences in thickness were more significant in Early-Middle Paleozoic time and decreased considerably upward in time. The total thickness of the Lower Paleozoic succession in the eastern side of the Gavbandi High is approximately 40–50% thicker than on the summit of this basement high. Sedimentary pinch-outs through Cretaceous and Tertiary times indicate that the activity of the basement faults decreased but did not stop. The impact on hydrocarbon traps of the pre-folding basin architecture and the differences in the behavior of the sedimentary cover after Miocene folding is discussed and documented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号