首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The occurrence of dental/skeletal fluorosis among the people in the study area provided the motivation to assess the distribution, severity and impact of fluoride contamination in groundwater of Bankura district at Simlapal block, West Bengal, India. To meet the desired objective, groundwater samples were collected from different locations of Laxmisagar, Machatora and Kusumkanali regions of Simlapal block at different depths of tube wells in both pre- and post-monsoon seasons. Geochemical results reveal that the groundwaters are mostly moderate- to hard-water type. Of total groundwater samples, 37% are situated mainly in relatively higher elevated region containing fluoride above 1.5 mg/L, indicating that host aquifers are severely affected by fluoride contamination. Machatora region is highly affected by fluoride contamination with maximum elevated concentration of 12.2 mg/L. Several symptoms of fluorosis among the different age-groups of people in Laxmisagar and Machatora areas are indicating consumption of fluoridated water for prolonged period. The groundwater samples were mainly Na–Ca–HCO3 type and rock dominance indicating the dissolution of minerals taking place. Ion exchange between OH? ion and F? ion present in fluoride-bearing mineral is the most dominant mechanism of fluoride leaching. High concentration of Na+ and HCO3 ? increases the alkalinity of the water, providing a favorable condition for fluoride to leach into groundwater from its host rocks and minerals.  相似文献   

2.
The groundwaters from Zhongxiang City, Hubei Province of central China, have high fluoride concentration up to 3.67 mg/L, and cases of dental fluorosis have been found in this region. To delineate the nature and extent of high fluoride groundwaters and to assess the major geochemical factors controlling the fluoride enrichment in groundwater, 14 groundwater samples and 5 Quaternary sediment samples were collected and their chemistry were determined in this study. Some water samples from fissured hard rock aquifers and Quaternary aquifers have high fluoride concentrations, whereas all karst water samples contain fluoride less than 1.5 mg/L due to their high Ca/Na ratios. For the high fluoride groundwaters in the fissured hard rocks, high HCO3 concentration and alkaline condition favor dissolution of fluorite and anion exchange between OH in groundwater and exchangeable F in some fluoride-bearing minerals. For fluoride enrichment in groundwaters of Quaternary aquifers, high contents of fluoride in the aquifer sediments and evapotranspiration are important controls.  相似文献   

3.
The present work was carried out in Nalbari district of Assam (India) with an objective to assess the quality of groundwater and to check its suitability for drinking and irrigation purposes. Groundwater samples were collected from 50 different locations during pre- and post-monsoon seasons of 2016. Results of chemical analysis revealed that mean concentration of cations varied in the order Ca2+?>?Na+?>?Mg2+?>?K+, while for anions the order was HCO3 ??>?Cl??>?SO42??>?NO32??>?F? during both pre- and post-monsoon seasons. The suitability of groundwater samples for drinking purpose was assessed by comparing the results of physico-chemical analysis of groundwater with Indian Standards. Further, its suitability for irrigation purpose was assessed by evaluating several parameters like sodium adsorption ratio (SAR), sodium percentage (Na%), magnesium ratio, Kelly’s ratio and residual sodium carbonate (RSC). The SAR values obtained for all the samples were plotted against EC values in the US Salinity Laboratory diagram, and it was revealed that the most of the samples fall under water type C2-S1 indicating medium salinity and low SAR. Further, it was found that the majority of the samples belong to Ca–Mg–HCO3 hydrochemical facies followed by Ca–Mg–Cl–SO4, whereas only a few samples belong to Na–K–HCO3 hydrochemical facies.  相似文献   

4.
India has an increasing incidence of fluorosis, dental and skeletal, with nearly about 62 million people at risk. High fluoride groundwaters are present especially in the hard rock areas of the country. This paper analyzes the most extensive database on fluoride and other chemical constituent distribution in the coastal hard rock aquifers of Thoothukudi district. A total of 135 samples were collected and analyzed for major cations and anions to assess the geochemical process. The fluoride concentration in drinking waters varied from BDL to 3.2 mg?l?1 in the study area. Majority of the samples do not comply with WHO standards for most of the water quality parameters. The saturation index of fluorite saturation index was used to correlate with F? to identify their relationship to increase of fluoride levels. The correlation between the F? concentration and the water type was also attempted. Spatial distribution of fluoride in groundwater was studied to understand the influencing factors. The relationship of F? with HCO? 3, Na+ and pH concentrations were studied and found that HCO? 3, has good correlation with F? than the other parameters.  相似文献   

5.
There are 59 springs at the Gevas–Gurp?nar–Güzelsu basins, 38 of these springs emerge from the fractured karst aquifers (recrystallized limestone and travertine) and 21 emerge from the Yuksekova ophiolites, K?rkgeçit formation and alluvium. The groundwater samples collected from 38 out of the total of 59 springs, two streams, one lake and 12 wells were analyzed physico-chemically in the year 2002. EC and TDS values of groundwater increased from the marble (high altitude) to the ophiolites and alluvium (toward Lake Van) as a result of carbonate dissolution and connate seawater. Five chemical types of groundwater are identified: Ca–Mg–HCO3, Mg–Ca–HCO3, Mg–Na–HCO3, Na–Ca–HCO3 and Mg–Ca–Na–HCO3. The calculations and hydrochemical interpretations show that the high concentrations of Ca2+, Mg2+ and HCO3 ? as predominant ions in the waters are mainly attributed to carbonate rocks and high pCO2 in soil. Most of the karst springs are oversaturated in calcite, aragonite and dolomite and undersaturated in gypsum, halite and anhydrite. The water–rock interaction processes that singly or in combination influence the chemical composition of each water type include dissolution of carbonate (calcite and dolomite), calcite precipitation, cation exchange and freshening of connate seawater. These processes contribute considerably to the concentration of major ions in the groundwater. Stable isotope contents of the groundwater suggest mainly direct integrative recharge.  相似文献   

6.
Insufficient knowledge of the hydrogeochemistry of aquifers in the Central Region of Ghana has necessitated a preliminary water quality assessment in some parts of the region. Major and minor ions, and trace metal compositions of groundwater have been studied with the aim of evaluating hydrogeochemical processes that are likely to impair the quality of water in the study area. The results show that groundwater in the area is weakly acidic with mean acidity being 5.83 pH units. The dominant cation in the area is Na, followed by K, Ca, and Mg, and the dominant anion is Cl?, followed by HCO3 ? and SO4 2?. Two major hydrochemical facies have been identified as Na–Cl and Na–HCO3, water types. Multivariate statistical techniques such as cluster analysis (CA) and factor analysis/principal component analysis (PCA), in R mode, were employed to examine the chemical compositions of groundwater and to identify factors that influenced each. Q-mode CA analysis resulted in two distinct water types as established by the hydrochemical facies. Cluster 1 waters contain predominantly Na–Cl. Cluster 2 waters contain Na–HCO3 and Na–Cl. Cluster 2 waters are fresher and of good quality than cluster 1. Factor analysis yielded five significant factors, explaining 86.56% of the total variance. PC1 explains 41.95% of the variance and is contributed by temperature, electrical conductivity, TDS, turbidity, SO4 2?, Cl?, Na, K, Ca, Mg, and Mn and influenced by geochemical processes such as weathering, mineral dissolution, cation exchange, and oxidation–reduction reactions. PC2 explains 16.43% of the total variance and is characterized by high positive loadings of pH and HCO3 ?. This results from biogenic activities taking place to generate gaseous carbon dioxide that reacts with infiltrating water to generate HCO3 ?, which intend affect the pH. PC3 explains 11.17% of the total variance and is negatively loaded on PO4 3? and NO3 ? indicating anthropogenic influence. The R-mode PCA, supported by R-mode CA, have revealed hydrogeochemical processes as the major sources of ions in the groundwater. Factor score plot revealed a possible flow direction from the northern sections of the study area, marked by higher topography, to the south. Compositional relations confirmed the predominant geochemical process responsible for the various ions in the groundwater as mineral dissolution and thus agree with the multivariate analysis.  相似文献   

7.
Groundwater samples were collected from various localities of Mithi sub-district of the Thar Desert of Pakistan and analysed for fluoride ion along with other chemical parameters. The area is mainly covered by sand dunes and kaolin/granite at variable depths. Results showed that collected water samples were severely contaminated by the presence of fluoride ion and most of the samples have higher concentration than prescribed WHO standards (1.5 mg/l) for drinking water. Fluoride ion concentrations ranged between 0.09 and 11.63 mg/l with mean and median values of 3.64 and 3.44 mg/l, respectively, in this area whereas, distribution pattern showed high concentrations in the vicinity of Islamkot and Mithi towns. The content of F has also been correlated with other major ions found in the groundwater of the study area. The positive correlation of F with Na+ and HCO3 showed that the water with high Na+ and HCO3 stabilizes F ions in the groundwater of the Thar Desert. The pH versus F plots signifies high fluoride concentration at higher pH values, implying that alkaline environment favours the replacement of exchangeable OH with F in the groundwater of Mithi area. The saturation indices (SI) of fluorite (CaF2) and calcite (CaCO3) in the groundwater samples showed that most of the samples are oversaturated with respect to calcite whereas majority of samples have been found under saturated with respect to fluorite. The log TDS and Na/Na+Ca ratio reflected supremacy of weathering of rocks, which promotes the availability of fluoride ions in the groundwater. Piper diagram has been used to classify the hydrofacies. In the cation triangle, all samples are Na-type, while the anion triangle reflects major dominance of Cl-type with a minor influence of HCO3 and SO4 .  相似文献   

8.
Fluoride (F?) has significant impacts on human health. High fluoride groundwater (up to 1.90 mg/L) has been found in upper confined aquifer underlying the first terrace of Weihe River during a hydrogeological investigation for water supply in 2005. To reveal the occurrence and hydrogeochemistry of high F? groundwater, hydrogeochemical tools such as saturation index, ionic ratios and correlation analysis were used in this study. The study shows that the concentrations of most physiochemical parameters from phreatic water, influenced by intensive evaporation and anthropogenic activities such as unregulated sewage and excreta disposal and agricultural practices in the area, are higher than those of confined water. The F? concentration in phreatic water is within the acceptable limits set by China and the World Health Organization (WHO), while that of upper confined water shows a decreasing trend northwestward as the Weihe River approaches, with F? concentration in the first terrace beyond the national and the WHO standards. High F? groundwater is observed in alkaline environment associated with high Na+, pH, HCO3 ? and low Ca2+ and Mg2+. The enrichment of F? is controlled by geologic and hydrogeological conditions, fluorine-bearing minerals presented in alluvial formations and their dissolution/precipitation under the alkaline environment along groundwater flow. Ion exchange, human activities and the mixing of different recharge waters may influence the enrichment of F? as well.  相似文献   

9.
Groundwater hydrochemistry could reveal the interaction mechanism between groundwater and the environment, which provides a scientific basis for environmental resources management. In this study, Shukaliefu’s classification method and Piper diagram were adopted to determine the hydrochemical types of groundwater in the Tarim Basin of Xinjiang, China. The method of “one-vote veto” was applied to evaluate the quality of groundwater. Phreeqc software was used to calculate the saturation indices of calcite and fluorite in groundwater. By comparing groundwater quality data of 2003 and 2011, we characterized the variations in hydrochemical types and water quality types, salinization of groundwater and fluoride geochemistry of the plain area of the Tarim Basin. Results show that the primary anion in phreatic water in the plain area of the Tarim Basin changed from HCO3 ? to SO4 2? or Cl?. On the contrary, the primary anion in confined water changed from SO4 2? or Cl? to HCO3 ?. In 2003, 63.1 % of the sampling points in the study area exceeded the Class III water quality standard of China. In 2011, the proportion increased to 82.5 %. In addition, severe groundwater salinization was found at 19.7 % of the sampling points. Some of the deep groundwater samples were salinized as well. In the Aksu area at the north-west part of the Tarim Basin, F? concentration exceeding the standard limit (1 mg/L) was found to be 55.0 % of the groundwater samples tested. Based on these findings, it is concluded that the phreatic water in the study area was severely influenced by the industrial wastewater and domestic sewage related to human activities, while the confined water was less affected. The general quality of groundwater was in an aggravation trend, and the groundwater salinization was in a severe condition in this area. The Ca2+–Na+ ionic exchange, the unsaturated fluorite and oversaturated calcite in the aquifer of the Aksu area are proposed to cause F? enrichment in groundwater of this area.  相似文献   

10.
Hydrogeochemical controlling factors for high rate of groundwater contamination in stressed aquifer of fractured, consolidated rocks belonging to semi-arid watershed are examined. The groundwater in mid-eastern part of Prakasam district confining to Musi-Gundlakamma sub-basins is heavily contaminated with nitrate and fluoride. Distinct water chemistry is noticed among each group of samples segregated based on concentration of these contaminants. The nitrate is as high as 594 mg/l and 57 % of the samples have it in toxic level as per BIS drinking water standards, so also the fluoride which has reached a maximum of 8.96 mq/l and 43 % of samples are not fit for human consumption. Nitrate contamination is high in shallow aquifers and granitic terrains, whereas fluoride is in excess concentration in deeper zones and meta-sediments among the tested wells, and 25 % of samples suffer from both NO3 ? and F? contamination. Na+ among cations and HCO3 ? among anions are the dominant species followed by Mg2+ and Cl?. The NO3 ?-rich groundwater is of Ca2+–Mg2+–HCO3 ?, Ca2+–Mg2+–Cl? and Na+–HCO3 ? type. The F?-rich groundwater is dominantly of Na+–HCO3 ? type and few are of Na+–SO4 2? type, whereas the safe waters (without any contaminants) are of Ca2+–Mg2+–HCO3 ?– and Na+–HCO3 ? types. High molecular percentage of Na+, Cl?, SO4 2? and K? in NO3 ? rich groundwater indicates simultaneous contribution of many elements through domestic sewerage and agriculture activity. It is further confirmed by analogous ratios of commonly associated ions viz NO3 ?:Cl?:SO4 2? and NO3 ?:K+:Cl? which are 22:56:22 and 42:10:48, respectively. The F? rich groundwater is unique by having higher content of Na+ (183 %) and HCO3 ? (28 %) than safe waters. The K+:F?:Ca2+ ratio of 10:5:85 and K+:F?: SO4 2? of 16:7:77 support lithological origin of F? facilitated by precipitation of CaCO3 which removes Ca2+ from solution. The high concentrations of Na+, CO3 ? and HCO3 ? in these waters act as catalyst allowing more fluorite to dissolve into the groundwater. The indices, ratios and scatter plots indicate that the NO3 ? rich groundwater has evolved through silicate weathering-anthropogenic activity-evapotranspiration processes, whereas F? rich groundwater attained its unique chemistry from mineral dissolution-water–rock interaction-ion exchange. Both the waters are subjected to external infusion of certain elements such as Na+, Cl?, NO3 ? which are further aggravated by evaporation processes leading to heavy accumulation of contaminants by raising the water density. Presence of NO3 ? rich samples within F? rich groundwater Group and vice versa authenticates the proposed evolution processes.  相似文献   

11.
Presence of fluoride in groundwater is a public health problem in the so-called endemic fluorosis belt of the central Iran, where the groundwater is the major source of drinking water in most urban and rural areas. Therefore, an attempt has been made to determine the hydrogeochemical factors controlling fluoride enrichment in the groundwater resources at this belt. Fluoride concentrations ranged from 0.20 to 1.99 mg/L (1.02 ± 0.47) in groundwater samples. The presence of different F-bearing minerals and also clay minerals in the soils and aquifer materials was confirmed using XRD analysis. To identify probable sources of dissolved F? and investigate groundwater quality, multivariate statistical analyses were carried out. Geochemical modeling indicated that all samples were undersaturated with respect to fluorite, halite, gypsum and anhydrite and mostly oversaturated with respect to calcite and dolomite. Contrary to most high-fluoride regions in the World, the high F? content was dominated by Na–Cl- and Ca–SO4-type groundwater in the study area. Besides, fluoride showed negative relationship with pH and HCO3 ? in groundwater. In order to assess the bioavailability of fluoride in soils, a two-step chemical fractionation method was applied. The results showed that fluoride in soils mostly accompanied with the residual and water-soluble fractions and was poorly associated with soil’s bonding sites. Calculated aqueous migration coefficient demonstrated that fluoride in the studied soils was mobile to easily leachable to the groundwater. Finally, the results demonstrated that combination of water–rock interaction and influence of clay minerals is geochemical mechanism responsible for controlling fluoride enrichment in groundwater.  相似文献   

12.
Correct identification of water inrush sources is particularly important to prevent and control mine water disasters. Hydrochemical analysis, Fisher discriminant analysis, and geothermal verification analysis were used to identify and verify the water sources of the multi‐aquifer groundwater system in Gubei coal mine, Anhui Province, North China. Results show that hydrochemical water types of the Cenozoic top aquifer included HCO3–Na+K–Ca, HCO3–Na+K–Mg and HCO3–Na+K, and this aquifer was easily distinguishable from other aquifers because of its low concentration of Na++K+ and Cl. The Cenozoic middle and bottom aquifers, the Permian fissure aquifer, and the Taiyuan and Ordovician limestone aquifers were mainly characterized by the Cl–Na+K and SO4–Cl‐Na+K or HCO3–Cl–Na+K water types, and their hydrogeochemistries were similar. Therefore, water sources could not be identified via hydrochemical analysis. Fisher model was established based on the hydrogeochemical characteristics, and its discrimination rate was 89.19%. Fisher discrimination results were improved by combining them with the geothermal analysis results, and this combination increased the identification rate to 97.3 % and reasonably explained the reasons behind two water samples misjudgments. The methods described herein are also applicable to other mines with similar geological and hydrogeological conditions in North China.  相似文献   

13.
Fluoride in drinking water has both beneficial and detrimental effects on public health, and a narrow range between .6 and 1.5 mg/L is optimal for consumption. However, natural groundwater sources exceed these guidelines affecting the entire population. This study aims to assess the distribution and controlling factors of fluoride concentration in the Tamiraparani River basin, South India. A total of 124 groundwater samples were analyzed for their fluoride content and other hydrogeochemical parameters. The fluoride concentration in the study area varied from .01 to 1.67 mg/L, and the highest concentrations were measured in the northern and central parts of the study area, which is underlain by charnockites and hornblende biotite gneiss. The sampling indicated (as per the Bureau of Indian Standards) that 53.9% of the area has fluoride concentrations below levels that are protective of teeth from dental caries (<.6 mg/L). .1% of the area is considered to be at risk of dental fluorosis, and the remaining 46% of the area is considered to have fluoride levels at desirable to permissible limit in groundwater. The groundwater in the study area belongs to Ca–Mg–Cl–SO4 and Ca–Mg–HCO3 types. A positive correlation between fluoride and TDS, Na+, K+ and HCO3 ? indicates its geogenic origin, and positive loading between pH and fluoride shows that alkaline environment enhances the dissolution of fluoride-bearing minerals into the groundwater. An empirical Bayesian kriging model was applied to interpolate the fluoride concentration in the study area. This geostatistical model is found to be better than other kriging methods, and it yielded an average standard error of .332 and root-mean-square standardized value of .986.  相似文献   

14.
The functional factors responsible for fluoride (F?)-bearing groundwater used for drinking as well as for cooking in the area of Gummanampadu Sub-basin, Guntur District, Andhra Pradesh, India are discussed. The study area is a part of an Archean Gneissic Complex, consisting of banded-biotite-hornblende-gneisses, over which the Proterozoic Cumbhum quartzites, shales, phyllites, and dolomitic limestones occur. The chemistry of groundwater is dominated by carbonates (HCO3 ? and CO3 2?) at a higher pH. This results in a higher total alkalinity over total hardness, causing an excess alkalinity. Sodium ion is dominated among the cations (Ca2+, Mg2+, and K+). The concentration of F? (2.1–3.7 mg/L) is higher than that of desirable national limit (1.2 mg/L) prescribed for drinking purpose. A significant positive correlation exists between F? and pH as well as that between F? and HCO3 ? + CO3 2?. This indicates that the alkaline condition is the prime conducive factor for dissolving F?-bearing minerals more effectively leading to a higher concentration of F? in the groundwater. Furthermore, a positive chloro-alkaline index reflects the ion exchange, and an oversaturation with respect to CaCO3 indicates the evaporation. In addition, a negative relation between the well depth and F? shows the effect of solubility and/or leaching of salts in different depth levels. These factors regulate the concentration of F? in the groundwater. On the other hand, a positive correlation of F? with SO4 2? as well as with K+ shows the human land use activities (namely, use of chemical fertilizers, disposal of domestic wastes, etc.), which add F? to the groundwater. A significant number of the residents of the study area suffer from the health disorders related to fluorosis, which is a consequence of higher concentration of F? in the drinking water. Thus, this study emphasizes the need for supply of safe drinking water, nutritional diet, rainwater-harvesting structures, and public education to realize “health for all” motto of World Health Organization.  相似文献   

15.
This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria, and to understand the major factors governing groundwater quality. The study area is suffering from recurring droughts, groundwater resource over-exploitation and groundwater quality degradation. The approach used is a combination of traditional hydrochemical analysis methods of multivariate statistical techniques, principal component analysis (PCA), and ratios of major ions, based on the data derived from 33 groundwater samples collected in February 2014. Results show that groundwater in the study area are highly mineralized and collectively has a high concentration of chloride (as Cl?). The dominant water types are Na-Cl (27%), Mg-HCO3 (24%) and Mg-Cl (24%). According to the (PCA) approach, salinization is the main process that controls the hydrochemical variability. The PCA analysis reveal the impact of anthropogenic factor especially the agricultural activities on the groundwater quality. The PCA highlighted two types of recharge: Superficial recharge from effective rainfall and excess irrigation water distinguished by the presence of nitrate and lateral recharge or vertical leakage from carbonate formations marked by the omnipresence of HCO3?. Additionally, three categories of samples were identified: (1) samples characterized by good water quality and receiving notable recharge from carbonate formations; (2) samples impacted by the natural salinization process; and (3) samples contaminated by anthropogenic activities. The major natural processes influencing water chemistry are the weathering of carbonate and silicate rocks, dissolution of evaporite as halite, evaporation and cation exchange. The study results can provide the basis for local decision makers to ensure the sustainable management of groundwater and the safety of drinking water.  相似文献   

16.
Distribution of fluoride in groundwater of Maku area, northwest of Iran   总被引:3,自引:0,他引:3  
High fluoride groundwater occurs in Maku area, in the north of West Azarbaijan province, northwest of Iran. Groundwater is the main source of drinking water for the area residents. Groundwater samples were collected from 72 selected points including 40 basaltic and 32 nonbasaltic springs and wells, in two stages, during June and August 2006. The areas with high fluoride concentrations have been identified, and the possible causes for its variation have been investigated. Regional hydrogeochemical investigation indicates that water-rock interaction is probably the main reason for the high concentration of ions in groundwater. The concentration of F in groundwater is positively correlated with that of HCO3 and Na+, indicating that groundwater with high HCO3 and Na+ concentrations help to dissolve some fluoride-rich minerals. All of the water samples, collected from the basaltic areas do not meet the water quality standards for fluoride concentration and some other parameters. Hence, it is not suitable for consumption without any prior treatment. Inhabitants of the area that obtain their drinking water supplies from basaltic springs and wells are suffering from dental fluorosis. The population of the study area is at a high risk due to excessive fluoride intake especially when they are unaware of the amount of fluoride being ingested due to lack of awareness.  相似文献   

17.
The present research aims to identify sources of ions and factors controlling the geochemical evolution of groundwater in an intermountain basin, comprising hill and valley fill region, of Outer Himalaya in Himachal Pradesh, India. The groundwater samples collected from 81 tubewells and handpumps are analyzed for major ions, trace metals and stable isotopes (δ18O and δD). Geochemically the dominant hydrochemical facies in the Una basin are Ca–HCO3, Ca–Mg–HCO3 and Na–Cl types at few locations. A relatively lower ionic concentration in the valley fills indicates dilution and low residence time of water to interact with the aquifer mass due to high porosity and permeability. The ionic ratios of 0.9, 0.8 and 3.8 to 5.7, respectively, for (Ca?+?Mg): HCO3, (Ca?+?Mg): (HCO3?+?SO4) and Na: Cl, suggests that ionic composition of groundwater is mainly controlled by rock weathering of, particularly by dissolution/precipitation of calcrete and calcite hosted in rock veins and Ca–Na feldspar hosted in conglomerate deposits derived from the Higher and Lesser Himalaya during the formation of Siwalik rocks. Although Na, K, NO3 and SO4 are introduced in the groundwater through agricultural practices, Na has also been introduced through ion exchange processes that have occurred during water–rock interaction, as indicated by negative CAI values. Factor analysis further suggests three major factors affecting the water chemistry of the area. The first two factors are associated with rock weathering while the third is anthropogenic processes associated with high nitrate and iron concentration. High concentrations of Fe and Mn ions that are exceeded that of WHO and BIS standards are also present at few locations. The recharge of groundwater in the Outer Himalaya is entirely through Indian Southwest Monsoon (ISM) and depleted ratios of δ18O/δD in valley region indicate infiltration from irrigation in recharging the groundwater and fractionation of isotopes of precipitation due to evaporation before infiltration. High d-excess values and inverse relation with δ18O are indicative of secondary evaporation of precipitation during recharge of groundwater.  相似文献   

18.
A study of the hydrochemical evaluation of waters in the I??kl? Lake and surrounding area was carried out with the objective of identifying the geochemical processes and their relation with water quality in the region. The multivariate statistical techniques were used in the hydrochemical evaluation of waters. Statistical analysis of water quality parameters was made to seeing the interrelationship between different variables in order to explain the water quality and pollution status of study area. For this purpose, water samples were taken from lake, river, stream, and springs which are represented by investigated area and water qualities were evaluated. Generally, Ca2+, Mg2+, and Cl?, HCO3 ? ions are dominant within surface water and water sources. Arsenic concentration increase is determined in I??kl? spring and Kufi stream water samples. Also, aluminum concentration is high level in the Kufi stream water samples. This increase was related to igneous rocks as geogenic origin. Also, geogenic contamination was identified in R-mode factor and cluster analyses. There is high correlation between electrical conductivity and major ions of waters.  相似文献   

19.
Fluoride (F?) is essential for normal bone growth, but higher concentration in the drinking water causes health problems which are reported in many states of India. Andhra Pradesh is one of the states which suffer from excess fluoride in groundwater particularly in the hard rock terrain. In this context, a study was conducted in Andhra Pradesh based on chemical analysis of water samples from hydrograph net work stations (dug wells) and exploratory bore wells. The concentration of fluoride in groundwaters ranges from traces to 9.75 mg/l. The occurrence of fluoride is mostly sporadic, uneven and varies with depth. The highly affected districts include Nalgonda and Warangal in Telangana region, Prakasam in coastal region, Anantapur and Kurnool in Rayalaseema region. In certain areas of Nalgonda district, 85% of wells have fluoride more than permissible limit (> 1.5 mg/l) for drinking water. High F? is present in all the geological formations, predominantly in granitic aquifers, compared to the other formations. The average value of fluoride is high in the deeper zone (1.10 mg/L), compared to the shallow zone (0.69 mg/L). The fluoride-rich minerals present are the main sources for fluoride concentrations in groundwater. Residence time, evapotranspiration and weathering processes are some of the other supplementary factors for high fluoride concentrations in groundwater. Long-term data of hydrograph net work stations (dug wells) reveal that fluoride concentrations do not show any marked change of trend with respect to time. The concentration of fluoride is found to increase with increase of Na+and HCO 3 ? , and decrease with increase of Ca2+. Sodium bicarbonate waters are more effective in releasing fluoride from minerals into groundwater. High fluoride waters are of Na+ type. The paper presents a brief account of the study and its results.  相似文献   

20.
Assessment of groundwater quality in and around Vedaraniyam,South India   总被引:1,自引:1,他引:0  
Groundwater from 47 wells were analyzed on the basis of hydrochemical parameters like pH, electric conductivity, total dissolved solids, Ca2+, Mg2+, Na+, K+, Cl?, CO3 2?, HCO3 ?, NO3 ?, PO4 3? and F? in the Cauvery delta of Vedaraniyam coast. Further, water quality index (WQI), sodium percentage (Na %), sodium absorption ratio, residual sodium carbonate, permeability index and Kelley’s ratio were evaluated to understand the suitability of water for drinking and irrigation purposes. The result shows significant difference in the quality of water along the coastal stretch. The order of dominance of major ions is as follows: Na+ ≥ Mg2+ ≥ Ca2+ ≥ K+ and Cl? ≥ HCO3 ? ≥ CO3 2? ≥ PO4 3? ≥ F?. Na/Cl, Cl/HCO3 ratio and Revelle index confirmed that 60–70 % of the samples were affected by saline water intrusion. WQI showed that 36 % of the samples were good for drinking and the remaining were poor and unsuitable for drinking purpose. The degradation of groundwater quality was found to be mainly due to over-exploitation, brackish aquaculture practice, fertilizer input from agriculture and also due to domestic sewage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号