共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater quality in five catchment areas in Isfahan province of Iran is assessed by measuring physicochemical parameters including major cation and anion compositions, pH, total dissolved solid, electrical conductivity and total hardness. For this purpose, 567 piezometric well samples were collected in October 2007. The abundance of major ions in four of the catchment areas including Gavkhuni, Ardestan, Salt lake and Central Iran desert basins is similar and follows Cl??>?SO4 2??>?Na+?>?HCO3 ??>?Ca2+?>?Mg2+?>?K+?>?CO3 2? trend, while in the fifth basin (Karoon), the trend changes into HCO3 ??>?Ca2+?>?Cl??>?SO4 2??>?Mg2+?>?Na+?>?K+?>CO3 2?. In general, four water facies are determined and it is shown that alkali elements and strong acids are dominating over alkaline earth and weak acids. Statistical analysis including Mann?CWhitney U test indicate that physicochemical parameters in three of the five investigated basins [Gavkhuni, Ardestan and Central Iran desert (CID)] are similar, while Karoon and salt lake basins display different characteristics. The result indicate that groundwater west of the province is suitable for irrigation, while in the central and eastern parts of the province the groundwater loses its quality for this purpose. It is concluded that mineral dissolution and evapotranspiration are the main processes that determine major ion compositions. 相似文献
2.
The present study aimed at identifying the salinity source in the groundwater of Lenjanat Plain. To do so, non-isotopic geochemical methods were employed: groundwater samples were collected seasonally from 33 wells widespread in the area, and physicochemical parameters as well as major and minor elements were measured in the 132 samples. The data collected from the field and laboratory measurements were interpreted through statistical and hydrogeochemical graphs, mass ratios and saturation indexes obtained from modeling. The results revealed that hydrogeochemical properties of the study aquifer were controlled by rock/water interactions including ion exchange, dissolution of evaporation deposits (halite and gypsum) and precipitation/dissolution of carbonates. Based on the values of Cl/Br ratio in Lenjanat groundwater (329–4,492), dissolution of evaporation deposits in aquifer was the main cause for groundwater salinity. Considering the Lenjanat groundwater geochemical properties, the data confirm the reported Cl/Br ratios for groundwater affected by the dissolution of evaporation deposits (Cl/Br > 300) and overlaps with the range of Cl/Br ratios for domestic sewage effluent groundwater. Selecting the best chemical components and their ratios in non-isotopic geochemical methods provides an accurate distinction between sources of groundwater salinity. 相似文献
3.
Nitrate pollution of groundwater in Toyserkan,western Iran 总被引:3,自引:2,他引:3
Mohsen Jalali 《Environmental Earth Sciences》2011,62(5):907-913
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate
(NO3
−) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3
−, a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3
− concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3
− and chloride (Cl−) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl− and NO3
− (Cl− > 47 mg l−1, NO3
− > 27 mg l−1). The high correlation between NO3
− and Cl− (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters
appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation
practice. 相似文献
4.
Nitrate contamination of groundwater in an agroecosystem in Zhangye Oasis,Northwest China 总被引:3,自引:2,他引:3
In order to assess the extent of groundwater contamination by nitrate (NO3
−–N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study
was conducted in this area. The mean value of NO3
−–N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3
−–N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3,
52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table
observation wells, respectively. The result showed that the groundwater samples that had NO3
−–N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater
NO3
−–N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher
than those in urban or paddy areas. NO3
−–N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil. 相似文献
5.
An attempt has been made in this research work to evaluate the concentration of nitrate in groundwater and its management
in Apple town and its environs. Groundwater pollution has been reported in many aquifers because of high concentration of
nitrate in ground water, which is the result of excessive use of fertilizers to cropland. Systematic sampling was done, with
a view to understand the source of nitrate concentration in the study area. Fifteen sample sites were selected and the samples
were taken for a baseline study to understand the geochemistry of the study area and to assess its physicochemical characteristics.
The water quality parameters were investigated for summer (May, 2007) and winter (December, 2007) seasons and were compared
with the standard values given by ICMR / WHO. The hydrochemical data of 15 samples indicates that the concentration of almost
all parameters fall within the permissible limits except nitrate. Linear Trend Analysis on seasonal and annual basis clearly
depicted that nitrate pollution in the study area is increasing significantly. About 85% of samples during summer season and
67% of the samples during winter season were showing a high concentration of nitrate, exceeding permissible limit of WHO (50 mg/l),
which is due to the use of nitrogenous fertilizers in the study area. Appropriate methods for improving the water quality
and its management in the affected areas have been suggested. 相似文献
6.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions. 相似文献
7.
8.
Behnam Keshavarzi Farid Moore Fatemeh Rastmanesh Maryam Kermani 《Environmental Earth Sciences》2012,67(4):959-970
Following the appearance of symptoms of arsenic toxicity in the inhabitants of villages in the Muteh gold mining region, central Iran, the concentration of this element in various parts of biogeochemical cycle is investigated. For this purpose, rock, groundwater, soil, plant, livestock hair and wool, and human hair samples are collected and analysed. Total arsenic content ranges from 23 to 2,500?mg/kg in rock samples, 7?C1,061???g/l in water, 12?C232?mg/kg in soil, 0.5?C16?mg/kg in plant samples, 4.10?C5.69?mg/kg in livestock hair and wool, and 0.64?C5.82?mg/kg in human hair. Arsenic concentration in various parts of biogeochemical cycle near the gold deposit in a metamorphic complex, and also close to the gold-processing plant, is very high and decreases exponentially with increasing distance from them. Arsenic concentration in water from a well close to the Muteh gold mine is above 1?mg/L. Arsenic in hair samples taken from local inhabitants is above the recommended levels, and the control samples in Shahre-Kord city. Arsenic concentration is higher in male population and correlates positively with age. It is suggested that arsenic resulting from the decomposition of ore mineral such as orpiment (As2S3), realgar (As2S2) and arsenopyrite (FeAsS) is responsible for polluting natural resources and the human intake via drinking water and the food chain. Gold mining and processing has undoubtedly enhanced the release of arsenic and intensified the observed adverse effects in Muteh area. 相似文献
9.
P. Tahmasebi M. H. Mahmudy-Gharaie F. Ghassemzadeh A. Karimi Karouyeh 《Environmental Earth Sciences》2018,77(22):766
The Kouh-e Zar mining area with iron oxide-rich types of Cu–Au (IOCG)-type gold mineralization is located in a fractured zone between two main “Darouneh” and “Taknar” faults in 35 km northwest of Torbat-e Heydarieh. In this study, the hydrogeochemistry and water quality of groundwater were examined for irrigation uses. Totally, 11 groundwater samples were collected in semi-arid area surrounding the mine. According to the irrigation water quality indices such as sodium absorption ratio, sodium percentage, residual sodium carbonate, residual sodium bicarbonate, potential salinity, salinity index, salinity hazard, permeability index and magnesium hazard, the water resources were appraised suitable to unsuitable. Na+ was a dominant cation and HCO3? was a dominant anion in the water samples. Fortunately, SO42? content is low (<?250 mg/L) in the water samples because of low-sulfide content mineralization in this mine. Water–rock interaction was defined as the controlling process on groundwater chemistry based on the Gibbs diagram. Calculated saturation indices revealed that the anion and cations in groundwater originated from dissolution of minerals and evaporation process. In the case of dominant Ca2+ and Mg2+, they were originated by dissolution of carbonate minerals such as calcite, dolomite and aragonite. Na+ was likely originated by plagioclase weathering in the brecciated volcanic rocks. Though the sulfidic mineralization is not so high in the Kouh-e Zar area, however, considering the existence of metalogenic mineralization in the Kouh-e Zar area, there is also a risk potential of release of toxic elements into the groundwater on which further deep investigation is ongoing in the area. 相似文献
10.
11.
The source of fluoride toxicity in Muteh area,Isfahan, Iran 总被引:1,自引:0,他引:1
Behnam Keshavarzi Farid Moore Ali Esmaeili Fatemeh Rastmanesh 《Environmental Earth Sciences》2010,61(4):777-786
Endemic dental fluorosis has been observed in most inhabitants of three villages of Muteh area, located in northwest of Isfahan
province, with mottled enamel related to high levels of fluoride in drinking water (1.8–2.2 ppm). Forty-seven groundwater
samples from six villages were collected and fluoride concentrations along with physico-chemical parameters were analyzed.
Fluoride concentration in this area varies from 0.2 to 9.2 mg/l with highest fluoride level at Muteh gold mine (Chahkhatun
mine). Fluoride concentration positively correlates with pH and HCO3
− indicating that alkaline pH provides a suitable condition for leaching of fluoride from surrounding rocks. The district is
mainly covered by three lithological units, namely, metamorphic and granite rocks, alluvial sediments, and carbonate rocks.
Factor analysis shows that parameters can be classified into four components: electrical conductivity (EC), total dissolved
solids (TDS), Cl−, Na+ and K+, pH and F−, SO4
2−and Mg2+, HCO3
− and Ca2
+. The groundwaters from the three geological units were compared using Mann–Whitney U test. The order of median fluoride concentration is: metamorphic and granite rocks > alluvial sediments > carbonate rocks.
Hence, the fluoride content is most probably related to fluoride-bearing minerals such as amphibole and mica group minerals
in metamorphic and granitic rocks. The concentration of fluoride in drinking water wells located near the metamorphic complex
in Muteh area is above 2 ppm. 相似文献
12.
Hossein Banejad Hamid Mohebzadeh Mohammad Hossein Ghobadi Majid Heydari 《Journal of the Geological Society of India》2014,83(1):83-92
Numerical simulation of groundwater flow used for the estimation of hydraulic and hydrologic parameters which is an important tool for the management of aquifers. This study presents the results of a mathematical model developed for the simulation of groundwater flow in Nahavand plain aquifer in the southwest Hamadan province. For this purpose Groundwater Modeling Software (GMS) was used which supports the MODFLOW-2000 code. After gathering required data such as the hydrological, hydrogeological and topography maps, a 3D hydrogeological model of plain was constructed with borehole and surface elevation data. Then MODFLOW was used for simulation of flow. After initial simulation of the flow, the model was calibrated in steady state with trial-and-error and parameter estimation methods the observed head of groundwater table monitoring data of 1997. Results of calibration show that error between observed head and computed head is in allowable range. Also results of computed head with model show that groundwater flow is in the direction of the dominate slope (southeast to northwest). Finally MODPATH code which simulates advective transport of particles was used for estimation of flow path and source of contaminants. 相似文献
13.
14.
Late Paleozoic blueschists present good exposures in the Pateyar metamorphic complex (south of Chupanan, Isfahan Province). They are formed by metamorphism of primitive basaltic lavas. Petrography and microprobe analyses show that the studied rocks consist of glaucophane, actinolite, actinolitic hornblende, plagioclase (albite), sphene, magnetite, quartz and apatite. Secondary minerals are epidote, chlorite, pyrite, hematite and calcite. Mineralogical assemblages are consistent with blueschist facies metamorphism, which is followed by a retrograde metamorphism in greenschist facies. Estimation of the metamorphic conditions suggests 300–400°C and 7–11 kbar. Chemical signatures of the studied metamorphic rocks conclude that they retain main geochemical characteristics of the protoliths, which allow the petrochemical interpretations. Geochemical analyses of these blueschists show that they were originally tholeiitic basalts. Evident negative anomalies of Nb, Ta and Ti relative to Th, La and Ce, in the primitive mantle normalized spider-gram, reveal subduction role in their petrogenesis. The studied metavolcanics exhibit an intermediate chemistry between the N-MORB (normal mid-ocean ridge basalt) and IATB (island arc tholeitic basalt). Enrichment in LREE (light rare earth elements) and LILE (large ion lithophile elements) and relative depletion in HFSE (high field strength elements) suggest a back-arc basin paleotectonic setting for the Chupanan samples. The primitive magma of the analyzed samples possibly have been produced by 8–13% melting of a spinel lherzolite. The field and petrological data propose that the studied Paleozoic metavolcanics were formed in a back-arc basin above the northward subduction of Paleo-Tethys oceanic lithosphere in Central Iran. The chemical criteria of the LILE/HFSE ratio suggests that the subduction zone was young and immature during the volcanism. 相似文献
15.
16.
Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO_3 and Na-Cl.The aqueous concentrations of F~- and CO_3~(2-) show positive correlation whereas F~- and Ca~(2+) show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO_3 to Na-HCO_3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health. 相似文献
17.
Nitrate pollution of groundwater in the Yellow River delta,China 总被引:8,自引:0,他引:8
Jianyao Chen Makoto Taniguchi Guanqun Liu Kunihide Miyaoka Shin-ichi Onodera Tomochika Tokunaga Yoshihiro Fukushima 《Hydrogeology Journal》2007,15(8):1605-1614
Nitrate pollution of groundwater in the Yellow River delta, China is an important issue related not only to nitrate dispersion and health concerns but also to mass transport and interactions of groundwater, sea, and river waters in the coastal area. The spatial distribution of nitrate, nitrate sources, and nitrogen transformation processes were investigated by field surveys and geochemical methods. Nitrate occurred mainly in shallow layers and had a spatial distribution coinciding with geomorphology and land/water use. Irrigation water from the Yellow River and anthropogenic waste are two main nitrogen sources of nitrate in the delta, and both denitrification and mixing processes could take place according to characteristics identified by ionic and isotopic data. 相似文献
18.
19.
Mahnaz Khodami Moussa Noghreyan Ali Reza Davoudian 《Arabian Journal of Geosciences》2010,3(3):257-266
Late Miocene–Pliocene to Quaternary calc-alkaline lava flows and domes are exposed in southeast of Isfahan in the Urumieh Dokhtar magmatic belt in the Central Iran structural zone. These volcanic rocks have compositions ranging from basaltic andesites, andesites to dacites. Geochemical studies show these rocks are a medium to high K calc-alkaline suite and meta-aluminous. Major element variations are typical for calc-alkaline rocks. The volcanic rocks have SiO2 contents ranging between 53.8% and 65.3%. Harker diagrams clearly show that the dacitic rocks did not form from the basaltic andesites by normal differentiation processes. They show large ion lithophile elements- and light rare earth elements (LREE)-enriched normalized multielement patterns and negative Nb, Ti, Ta, and P. Condrite-normalized REE patterns display a steep decrease from LREE to light rare earth elements without any Eu anomaly. These characteristics are consistent with ratios obtained from subduction-related volcanic rocks and in collision setting. The melting of a heterogeneous source is possible mechanism for their magma genesis, which was enriched in incompatible elements situated at the upper continental lithospheric mantle or lower crust. The geochemical characteristics of these volcanic rocks suggested that these volcanic rocks evolved by contamination of a parental magma derived from metasomatized upper lithospheric mantle and crustal melts. 相似文献