首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Denitrification-Decompostion (DNDC) model was used to estimate the impact of change in management practices on N2O emissions in seven major soil regions in Canada, for the period 1970 to 2029. Conversion of cultivated land to permanent grassland would result in the greatest reduction in N2O emissions, particularly in eastern Canada wherethe model estimated about 60% less N2O emissions for thisconversion. About 33% less N2O emissions were predicted for a changefrom conventional tillage to no-tillage in western Canada, however, a slight increase in N2O emissions was predicted for eastern Canada. GreaterN2O emissions in eastern Canada associated with the adoption of no-tillage were attributed to higher soil moisture causing denitrification, whereas the lower emissions in western Canada were attributed to less decomposition of soil organic matter in no-till versus conventional tilled soil. Elimination of summer fallow in a crop rotation resulted in a 9% decrease in N2O emissions, with substantial emissions occurringduring the wetter fallow years when N had accumulated. Increasing N-fertilizer application rates by 50% increased average emissions by 32%,while a 50% decrease of N-fertilizer application decreased emissions by16%. In general, a small increase in N2O emissions was predicted when N-fertilizer was applied in the fall rather than in the spring. Previous research on CO2 emissions with the CENTURY model (Smith et al.,2001) allowed the quantification of the combined change in N2O andCO2 emissions in CO2 equivalents for a wide range of managementpractices in the seven major soil regions in Canada. The management practices that have the greatest potential to reduce the combined N2O andCO2 emissions are conversion from conventional tillage to permanent grassland, reduced tillage, and reduction of summer fallow. The estimated net greenhouse gas (GHG) emission reduction when changing from cultivated land to permanent grassland ranged from 0.97 (Brown Chernozem) to 4.24 MgCO2 equiv. ha–1 y–1 (BlackChernozem) for the seven soil regions examined. When changing from conventional tillage to no-tillage the net GHG emission reduction ranged from 0.33 (Brown Chernozem) to 0.80 Mg CO2 equiv. ha–1 y–1 (Dark GrayLuvisol). Elimination of fallow in the crop rotation lead to an estimated net GHG emission reduction of 0.43 (Brown Chernozem) to 0.80 Mg CO2 equiv.ha–1 y–1 (Dark Brown Chernozem). The addition of 50% more or 50% less N-fertilizer both resulted in slight increases in combined CO2 and N2O emissions. There was a tradeoff in GHG flux with greaterN2O emissions and a comparable increase in carbon storage when 50% more N-fertilizer was added. The results from this work indicate that conversion of cultivated land to grassland, the conversion from conventional tillage to no-tillage, and the reduction of summerallow in crop rotations could substantially increase C sequestration and decrease net GHG emissions. Based on these results a simple scaling-up scenario to derive the possible impacts on Canada's Kyoto commitment has been calculated.  相似文献   

2.
Anthropogenic emissions of methane (CH4) and nitrous oxide (N2O) from livestock agriculture (enteric fermentation, animal waste management systems, and pasture manure) and plant growing of the Russia (CH4 emissions from rice fields, direct and indirect N2O emissions from agricultural lands) are considered. In 2004, the total emissions of these greenhouse gases in the agricultural sector amounted to 1.4 × 105 thousand t CO2-equivalent, which corresponds to 45% of the 1990 level (3.1 × 105 thousand t CO2-equivalent). In 2004, the contribution of N2O to the total agricultural emissions was approximately twice (67.0%) that of CH4 (33.0%). Direct N2O emissions from agricultural soils (0.5 × 105 thousand t CO2-equivalent) and CH4 emissions from the internal fermentation of domestic animals (0.4 × 105 thousand t CO2-equivalent) are the most significant sources in the agricultural sector of the Russian Federation. In 2004, all these agricultural sources emitting methane and nitrous oxide contributed about 7% CO2-equivalent to the total emission of the anthropogenic greenhouse gases in Russia.  相似文献   

3.
Agricultural soils are a major source of atmospheric nitrous oxide (N2O), a potent greenhouse gas (GHG). Because N2O emissions strongly depend on soil type, climate, and crop management, their inventory requires the combination of biophysical and economic modeling, to simulate farmers’ behavior. Here, we coupled a biophysical soil-crop model, CERES-EGC, with an economic farm type supply model, AROPAj, at the regional scale in northern France. Response curves of N2O emissions to fertilizer nitrogen (Nf) inputs were generated with CERES-EGC, and linearized to obtain emission factors. The latter ranged from 0.001 to 0.0225 kg N2O-N kg???1 Nf, depending on soil and crop type, compared to the fixed 0.0125 value of the IPCC guidelines. The modeled emission factors were fed into the economic model AROPAj which relates farm-level GHG emissions to production factors. This resulted in a N2O efflux 20% lower than with the default IPCC method. The costs of abating GHG emissions from agriculture were calculated using a first-best tax on GHG emissions, and a second-best tax on their presumed factors (livestock size and fertilizer inputs). The first-best taxation was relatively efficient, achieving an 8% reduction with a tax of 11 €/ t-CO2-equivalent, compared to 68 €/t-CO2 eq for the same target with the second-best scheme.  相似文献   

4.
Ammonia (NH3) emission from wheat (November to April) and rice (July to October) crops was measured using the chemiluminescence method at a subtropical agricultural area of India during 2009?C2010. Samples were collected from the canopy height during different growth stages of wheat crop to study the variations of NH3 emission during different growth stages of the crop. Background atmospheric concentration of NH3 was measured at 5 m height at the study site. Background NH3 concentration was subtracted from the NH3 concentration at crop canopy height to estimate the emission of NH3 from crop canopy. The NH3 emission from the wheat crop were recorded as 33.3 to 57.0; 15.3 to 29.2; 10.3 to 28.0; 8.7 to 23.9 and 13.9 to 28.9 ??g m?2 d?1 during sowing, crown root initiation (CRI), panicle initiation, grain filling and maturity stages of the crop respectively. The NH3 emission followed a diurnal pattern with significant correlation with ambient temperature at different crop growth stages. Cumulative seasonal NH3 emission to the atmosphere was accounted for the loss of ??10% of applied N-fertilizer during the wheat crop growing period. Immediate increase in NH3 emission was recorded from rice crop, grown under temperature gradient tunnel (TGT). However, the NH3 emission inside the TGT decreases within 3?C4 h after the N-fertilizer application. Continuous estimation of NH3 concentration at the crop canopy inside the TGT, suggests that the NH3 emission to the atmosphere reaches its peak within ??20 h of N-fertilizer application and continues up to 5 d following a diurnal pattern.  相似文献   

5.
Hydrofluorocarbons(HFCs) have been widely used in China as substitutes for ozone-depleting substances,the production and use of which are being phased out under the Montreal Protocol.China is a major consumer of HFCs around the world,with its HFC emissions in CO_2-equivalent contributing to about 18% of the global emissions for the period2012-16.Three methods are widely used to estimate the emissions of HFCs-namely,the bottom-up method,top-down method and tracer ratio method.In this study,the tracer ratio method was adopted to estimate HFC emissions in the Yangtze River Delta(YRD),using CO as a tracer.The YRD region might make a significant contribution to Chinese totals owing to its rapid economic growth.Weekly flask measurements for ten HFCs(HFC-23,HFC-32,HFC-125,HFC-134 a,HFC-143 a,HFC-152 a,HFC-227 ea,HFC-236 fa,HFC-245 fa and HFC-365 mfc) were conducted at Lin'an Regional Background Station in the YRD over the period 2012-16,and the HFC emissions were 2.4±1.4 Gg yr~(-1) for HFC-23,2.8±1.2 Gg yr~(-1) for HFC-32,2.2±1.2 Gg yr~(-1) for HFC-125,4.8±4.8 Gg yr~(-1) for HFC-134 a,0.9±0.6 Gg yr~(-1) for HFC-152 a,0.3±0.3 Gg yr~(-1) for HFC-227 ea and 0.3±0.2 Gg yr~(-1) for HFC-245 fa.The YRD total HFC emissions reached 53 Gg CO_2-e yr~(-1),contributing 34% of the national total.The per capita HFC CO_2-equivalent emissions rate was 240 kg yr-1,while the values of per unit area emissions and per million GDP emissions reached 150 Mg km~(-2)yr~(-1) and 3500 kg yr~(-1)(million CNY GDP)-1,which were much higher than national or global levels.  相似文献   

6.
Livestock constitutes an integral component of Indian agriculture sector and also a major source of GHGs emissions. The study presents a detailed inventory of GHG emissions at district/state level from different age-groups, indigenous and exotic breed of different Indian livestock categories estimated using the recent census 2003 and country-specific emission coefficients based on IPCC guidelines. The total methane emission including enteric fermentation and manure management of livestock was estimated at 11.75 Tg/year for the year 2003. Enteric fermentation constitutes ~91 % of the total methane emissions from Indian livestock. Dairy buffalo and indigenous dairy cattle together contribute 60 % of the methane emissions. The total nitrous oxide emission from Indian livestock for the year 2003 is estimated at 1.42 Gg/year, with 86.1 % contribution from poultry. The total GHGs emission from Indian livestock is estimated at 247.2 Mt in terms of CO2 equivalent emissions. Although the Indian livestock contributes substantially to the methane budget, the per capita emission is only 24.23 kgCH4/animal/year. Using the remote sensing derived potential feed/fodder area available for livestock, the average methane flux was calculated as 74.4 kg/ha. The spatial patterns derived in GIS environment indicated the regions with high GHGs emissions that need to be focused subsequently for mitigation measures. The projected estimates indicate a likely increase of 40 % in methane emissions from buffalo population.  相似文献   

7.
Methyl Chloride (CH3Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion (Carpenter et al. 2014). In the global CH3Cl budget, the atmospheric CH3Cl emissions is predominantly maintained by natural sources, of which magnitudes have been relatively well-constrained. However, significant uncertainties still remain in the CH3Cl emission strengths from anthropogenic sources. High-frequency and high-precision in situ measurements of atmospheric CH3Cl concentrations obtained since 2008 at Gosan station (a remote background site in the East Asia) reveal significant pollution events superimposed on the seasonally varying regional background levels. Back trajectory statistics showed that air masses corresponding to the observed CH3Cl enhancement largely originated from regions of intensive industrial activities in China. Based on an inter-species correlation method, estimates of CH3Cl emissions from manufacturing industries including coal combustion, use of feedstocks, or process agents in chemical production for China (2008–2012) are 297 ± 71 Gg yr.?1 in 2008 to 480 ± 99 Gg yr.?1 in 2009, followed by a gradual decrease of about 25% between 2009 and 2012 (398 ± 92 Gg yr.?1 for 2010; 286 ± 68 Gg yr.?1 for 2011; 358 ± 92 Gg yr.?1 for 2012). The annual average of industrial CH3Cl emissions for 2008–2012 (363 ± 85 Gg yr.?1) in China is comparable to the known total global anthropogenic CH3Cl emissions accounting only for coal combustion and indoor biofuel use. This may suggest that unless emissions from the chemical industry are accounted for, global anthropogenic emissions of CH3Cl have been substantially underestimated. In particular, since industrial production and use of CH3Cl have not been regulated under the Montreal Protocol (MP) or its successor amendments, continuous monitoring of Chinese CH3Cl outflow is important to properly evaluate its anthropogenic emissions.  相似文献   

8.
《Atmospheric Research》2005,73(1-2):161-170
In this paper, the amount of cereal waste burned in Spain, which represents the most important source of biomass burning in this country, is estimated. During the period between 1980 and 1998, an average mass of 8 Tg of cereal waste was burned annually, with remaining 1 Tg of ash on the cereal fields after combustion. By using emission factors previously calculated by Ortiz de Zárate et al. [Ortiz de Zárate, I., Ezcurra, A., Lacaux, J.P., Van Dihn, P., 2000. Emission factor estimates of cereal waste burning in Spain. Atmos. Environ. 34, 3183–3193.], it is deduced that pollutant emissions linked to cereal waste-burning process reach values of 11 Tg CO2, 80 Gg of TPM and 23 Gg of NOx year−1 during the cereal-burning period. These emissions represent 46% of total CO2 and 23% NOx emitted in Spain during the burning period that lasts 1 month after harvesting. Therefore, the relative importance of cereal waste burning as pollutant source in Spain almost during fire period becomes evident.Finally, our study allows to deduce that the production of 1 kg of cereal crop implies that 410 g of carbon and 3.3 g of nitrogen are going to be introduced into the atmosphere by this pollutant process. We estimate a total gaseous emission of 3.3 Tg of C and 25 Gg N as different pollutants by cereal waste burning.  相似文献   

9.
Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2–Eq yr–1 in1990 to 52 Tg CO2–Eq yr–1 in 2008. Adoption of thesink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2–Eq yr–1 (L), 42 TgCO2–Eq yr–1 (M) or 36 Tg CO2–Eq yr–1 (H). Among thesink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation andmanure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992).  相似文献   

10.
This paper provides estimates of emissions of two important but often not well-characterized greenhouse gas (GHG) emissions related to transportation energy use: methane (CH4) and nitrous oxide (N2O). The paper focuses on emissions of CH4 and N2O from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions of CH4 and N2O are a function of many complex aspects of combustion dynamics and of the type of emission control systems used. They therefore cannot be derived easily and instead must be determined through the use of published emission factors for each combination of fuel, end-use technology, combustion conditions, and emission control system. Furthermore, emissions of CH4 and N2O may be particularly important with regard to the relative CO2-equivalent GHG emissions of the use of alternative transportation fuels, in comparison with the use of conventional fuels. By analyzing a database of emission estimates, we develop emission factors for N2O and CH4 from conventional vehicles, in order to supplement recent EPA and IPCC estimates, and we estimate relative emissions of N2O and CH4 from different alternative fuel passenger cars, light-duty trucks, and heavy-duty vehicles.  相似文献   

11.
Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75–310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection.  相似文献   

12.
The purpose of this paper is to describe global urban greenhouse gas emissions by region and sector, examine the distribution of emissions through the urban-to-rural gradient, and identify covariates of emission levels for our baseline year, 2000. We use multiple existing spatial databases to identify urban extent, greenhouse gas emissions (CO2, N2O, CH4 and SF6) and covariates of emissions in a “top-down” analysis. The results indicate that urban activities are significant sources of total greenhouse gas emissions (36.8 and 48.6 % of total). The urban energy sector accounts for between 41.5 and 66.3 % of total energy emissions. Significant differences exist in the urban share of greenhouse gas emissions between developed and developing countries as well as among source sectors for geographic regions. The 50 largest urban emitting areas account for 38.8 % of all urban greenhouse gas emissions. We find that greenhouse gas emissions are significantly associated with population size, density, growth rates, and per capita income. Finally, comparison of our results to “bottom-up” estimates suggest that this research’s data and techniques are best used at the regional and global scales.  相似文献   

13.
旱作农田是N2O的主要排放源,削减其N2O排放有助于整体降低农田温室气体排放。运用整合分析(Meta-analysis)的方法,研究了不同农业管理措施对中国小麦和玉米农田N2O排放的影响,并估算了各减排措施的减排潜力。结果表明:添加抑制剂可显著减少小麦和玉米农田N2O排放36%~46%,并增加作物产量;施氮量减少30%以内,可削减N2O排放10%~18%,且对产量无明显影响;施用缓(控)释肥和秸秆还田能显著减少小麦田N2O排放,但对玉米田的减排效果并不显著。在不同的减排措施下,中国小麦和玉米农田N2O减排潜力分别为9.29~13.90 Gg N2O-N/生长季和10.53~23.19 Gg N2O-N/生长季。河南、山东、河北和安徽省小麦田减排潜力最大,占全国小麦田N2O减排潜力的53%;黑龙江、吉林、山东、河北和河南省玉米田减排潜力最大,约占全国玉米田N2O减排潜力的50%。  相似文献   

14.
An uncertainty assessment of the Austrian greenhouse gas inventory provided the basis for this analysis. We isolated the factors that were responsible for the uncertainty observed, and compared our results with those of other countries. Uncertainties of input parameters were used to derive the uncertainty of the emission estimate. Resulting uncertainty using a Monte Carlo approach was 5.2% for the emission levels of 2005 and 2.4 percentage points for the 1990–2005 emission trend. Systematic uncertainty was not assessed. This result is in the range expected from previous experience in Austria and other countries. The determining factor for the emission level uncertainty (not the trend uncertainty) is the uncertainty associated with soil nitrous oxide N2O emissions. Uncertainty of the soil N2O release rate is huge, and there is no agreement even on the magnitude of the uncertainty when country comparisons are made. In other words, reporting and use of N2O release uncertainty are also different between countries; this is important, as this single factor fully determines a country’s national greenhouse gas inventory uncertainty. Inter-country comparisons of emission uncertainty are thus unable to reveal much about a country’s inventory quality. For Austria, we also compared the results of the Monte Carlo approach to those obtained from a simpler error propagation approach, and find the latter to systematically provide lower uncertainty. The difference can be explained by the ability of the Monte Carlo approach to account for statistical dependency of input parameters, again regarding soil N2O emissions. This is in contrast to the results of other countries, which focus less on statistical dependency when performing Monte Carlo analysis. In addition, the error propagation results depend on treatment of skewed probability distributions, which need to be translated into normal distributions. The result indicates that more attention needs to be given to identifying statistically dependent input data in uncertainty assessment.  相似文献   

15.
Future global emissions of aerosols will play an important role in governing the nature and magnitude of future anthropogenic climate change. We present in this paper a number of future scenarios of emissions of black carbon (BC) and organic carbon (OC) by world region, which we combine with sulfate (SO4) assessed in terms of the emissions of its precursor, SO2. We find that aerosol emissions from the household and industrial sectors are likely to decline along almost all future pathways. Transportation emissions, however, are subject to complex interacting forces that can lead to either increases or decreases. Biomass burning declines in many scenarios, but the Amazon rainforests remain vulnerable if unsustainable economic growth persists. East Asia is the key region for primary aerosols, and trends in China will have a major bearing on the direction and magnitude of releases of BC (expected reductions in the range of 640–1290 Gg), OC (reductions of 520–1900 Gg), and SO2 (ranging from an increase of 21 Tg to a reduction of 30 Tg). Analysis of joint BC, OC, and SO2 emission changes identifies a number of key world regions and economic sectors that could be effectively targeted for aerosol reductions.  相似文献   

16.
Rapid growth of metropolitan areas is associated with increased flows of nitrogen (N) and phosphorus (P) in the food production–consumption system. However, quantitative analyses of these flows during urban expansion and information about their controlling factors are scarce.Here, we report on N and P flows in the food system of Beijing, which experienced a remarkable growth in population number between especially 1978–2008, using a combination of statistical data bases, surveys and the NUFER model (nutrient flow in the food system, environment and resource). The N (or P) cost of food is defined as the amount of ‘new’ N (or P) used in food production for the delivery of 1 kg N (or P) in the food entering household. ‘New’ N (P) includes fertilizer N (P), biological N fixation, atmospheric N deposition, and imports of N (P) via feed and food. Recycled N (P) includes N (P) in crop residues, manures and wastes.We found that the rapid increase in temporary migrants greatly increased food imports to Beijing metropolitan areas and thereby led to an apparent decrease of the N and P cost of food. The input of ‘new’ N to the food system of Beijing metropolitan areas increased from 180 to 281 Gg, and for P from 33.5 to 50.4 Gg during 1978–2008, as a result of increases in population and changes in food consumption patterns per capita. The food and feed imports in per cent of total ‘new’ N and P inputs increased from 31 to 63% for N and from 18 to 46% for P during 1978–2008. The N and P cost of the food was relatively low compared to the mean of China, and decreased over time. About 52% of the new N input and 85% of the new P input was not recycled in 2008, it accumulated as wastes (in crop residues, animal excreta, and human excreta and household wastes). The N and P use efficiencies in crop and animal production were low, i.e., only 17% for N and 11% for P in 2008. Total losses of ammonia (NH3) and nitrous oxide (N2O) to air and of N to groundwater and surface waters increased by a factor of about 3, and losses of P to groundwater and surface waters increased by a factor of 37 in the period 1978–2008.Key measures for decreasing N and P accumulation and losses are (1) developing satellite towns, (2) expelling animal production to rural areas, and (3) effective collection of the wastes and animal manure, and the utilization of these in rural areas outside Beijing. These findings may also portend changes in other metropolitan areas in China and elsewhere in the rapidly developing world.  相似文献   

17.
We measured the emissions of volatile aliphatic amines and ammonia produced by the manure of beef cattle, dairy cows, swine, laying hens and horses in livestock buildings. The amine emissions consisted almost exclusively of the three methylamines and correlated with those of ammonia. The molar emission ratios of the methylamines to ammonia, and data on NH3 emissions from animal husbandry in Europe, together with global statistics on domestic animals, were used to estimate the global emissions of amines. Annual global methylamine-N input to the atmosphere from animal husbandry in 1988 was 0.15±0.06 TgN (Tg=1012 g). Almost 3/4 of these emissions consisted of trimethylamine-N. This represents about half of all methylamine emissions to the atmosphere. Other sources are marine coastal waters and biomass burning.Possible reaction pathways for atmospheric methylamines are shown. Among various speculative but possible products N2O and HCN are of interest because the emission of methylamines could contribute to the global budgets of these compounds. Maximum atmospheric N2O production from methylamines are below 0.4 Tg N/year, which is less than 10% of the annual N2O growth rate. Although we do not expect the methylamine emissions to contribute in a major way to the atmospheric N2O budget, more studies are needed to establish this conclusion beyond doubt. Similar conclusions hold for HCN.  相似文献   

18.
Humans seem to have doubled the global rate of terrestrial nitrogen fixation. Globally 50–70% (85 Tg, 1 Tg=1012 g) of the nitrogen supplied in fertilizer (80 Tg N/a) and leguminous crops (40–80 Tg N/a) are used to feed cattle. The aim of the present study was to derive some estimates of global N2O production from animal manure. As the parameter giving the most stable numerical basis for regional and global extrapolation we adopted the molar emission ratios of N2O to NH3. These ratios were measured in cattle, pig and chicken housings with different manure handling systems, in dung-heaps and in liquid manure storage tanks. Individual molar emission ratios from outside manure piles varied over two orders of magnitude, strongly dependent on the treatment of the manure. A median emission ratio of 1.6×10-2 (n=65) was obtained in cow-sheds with slatted floors and liquid manure stored underneath and a median ratio of 24×10-2 (n=31) was measured in a beef cattle housing with a solid manure handling system.We next extrapolated to global NH3 emissions from those estimated for Europe, using N uptake by the animals as a scaling factor. Multiplication with observed N2O to NH3 ratios next provided some estimates of regional and global N2O emissions. To account for the great variability of the emission ratios of N2O/NH3, we developed upper and lower case emission scenarios, based on lower and upper quartiles of measured emission ratios. The global emission from cattle and swine manure is in the range of 0.2–2.5 Tg N-N2O/a, representing 44+-39% of the annual atmospheric accumulation rate. This N2O emission arises from about 40 Tg N/a of cattle and pig manure stored in or at animal housings. We did not account for N2O emissions from another 50 Tg N/a excreted by grazing cattle, goats and sheep, and application of the manure to agricultural fields. Our study makes it clear that major anthropogenic N2O emissions may well arise from animal manure. The large uncertainty of emission ratios, which we encountered, show that much more intense research efforts are necessary to determine the factors that influence N2O emissions from domestic animal manure both in order to derive a more reliable global estimate of N2O release and to propose alternative waste treatment methods causing smaller N2O releases. In our studies we found large enhancements in N2O releases when straw was added to the manure, which is a rather common practice. In view of the ongoing discussion in Europe to re-install the traditional solid manure system (bed down cattle) for environmental and animal welfare reasons, it is noteworthy that our measurements indicate highest N2O release from this particulary system.In a similar manner, but based on a smaller data set, we also estimated the release of CH4 from cattle and swine manure and from liquid manure only to be about 9 Tg/year in good agreement with the estimate by the Environmental Protection Agency (1994) of 8.6+-2.6 Tg/year. A total annual methane release as high as 34 Tg/a was derived for solid and liquid cattle and pig manure from animals in housings.  相似文献   

19.
The MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) model simulation has been carried out for the 2000–2100 period to investigate the impacts of future Indian greenhouse gas emission scenarios on the atmospheric concentrations of carbon dioxide, methane and nitrous oxide besides other parameters like radiative forcing and temperature. For this purpose, the default global GHG (Greenhouse Gases) inventory was modified by incorporation of Indian GHG emission inventories which have been developed using three different approaches namely (a) Business-As-Usual (BAU) approach, (b) Best Case Scenario (BCS) approach and (c) Economy approach (involving the country’s GDP). The model outputs obtained using these modified GHG inventories are compared with various default model scenarios such as A1B, A2, B1, B2 scenarios of AIM (Asia-Pacific Integrated Model) and P50 scenario (median of 35 scenarios given in MAGICC). The differences in the range of output values for the default case scenarios (i.e., using the GHG inventories built into the model) vis-à-vis modified approach which incorporated India-specific emission inventories for AIM and P50 are quite appreciable for most of the modeled parameters. A reduction of 7% and 9% in global carbon dioxide (CO2) emissions has been observed respectively for the years 2050 and 2100. Global methane (CH4) and global nitrous oxide (N2O) emissions indicate a reduction of 13% and 15% respectively for 2100. Correspondingly, global concentrations of CO2, CH4 and N2O are estimated to reduce by about 4%, 4% and 1% respectively. Radiative forcing of CO2, CH4 and N2O indicate reductions of 6%, 14% and 4% respectively for the year 2100. Global annual mean temperature change (incorporating aerosol effects) gets reduced by 4% in 2100. Global annual mean temperature change reduces by 5% in 2100 when aerosol effects have been excluded. In addition to the above, the Indian contributions in global CO2, CH4 and N2O emissions have also been assessed by India Excluded (IE) scenario. Indian contribution in global CO2 emissions was observed in the range of 10%–26%, 6%–36% and 10%–38% respectively for BCS, Economy and BAU approaches, for the years 2020, 2050 and 2100 for P50, A1B-AIM, A2-AIM, B1-AIM & B2-AIM scenarios. CH4 and N2O emissions indicate about 4%–10% and 2%–3% contributions respectively in the global CH4 and N2O emissions for the years 2020, 2050 and 2100. These Indian GHG emissions have significant influence on global GHG concentrations and consequently on climate parameters like RF and ∆T. The study reflects not only the importance of Indian emissions in the global context but also underlines the need of incorporation of country specific GHG emissions in modeling to reduce uncertainties in simulation of climate change parameters.  相似文献   

20.
《Climate Policy》2013,13(1):125-133
Abstract

Energy sector emissions from Russia have declined by about 33% from 1990 levels. We estimate that some 60–70% of the reduction is due to economic decline, and about 8–12% of it is due to reforms in the energy sector; the remainder being due to the wider use of natural gas and structural changes in the economy. Vigorous institutional and technological measures to promote energy efficiency could lead to savings of over 100 million t.c.e. per year by 2010, and keep CO2 emissions fairly close to current levels over the decade. In our view, international emissions trading should not lead to global emissions growth, but should facilitate the best energy saving and efficiency. Consequently, we propose that the available assigned amount should be divided into two components. That part arising from ‘type 1’ reductions, produced by special projects and measures relating to GHG reduction taken since 1990, should be freely traded; whereas the remaining ‘type 2’ surplus, without a clear link to real emission reduction activity, should only be traded if the revenues are recycled into special projects resulting in emissions reduction equal to or more than the amount of emissions sold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号