首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three independent temperature datasets have been analyzed for quantifying the influence of the 11-year solar cycle modulation of the UV radiation. The datasets used include: US rocketsondes, the OHP lidar, and the global temperature database made by the successive SSU on the NOAA satellites, adjusted and provided by the UK Meteorological Office. These measurements cover the upper stratosphere and the mesosphere, where the direct photochemical effect is expected. The improvement of the analysis compared to previous ones was possible because the overall quality and the continuity of many data series have been checked more carefully during the last decade in order to look for anthropogenic fingerprints and the one used here have been recognized as the best series according to their temporal continuity. The analysis of the different data set is based on the same regression linear model. The 11-year solar temperature response observed presents a variable behavior, depending on the location. However, an overall adequate agreement among the results has been obtained, and thus the global picture of the solar impact in the upper stratosphere and lower mesosphere has been obtained and is presented here. In the tropics, a 1–2 K positive response in the mid and upper stratophere has been found, in agreement with photochemical theory and previous analyses. On the opposite, at mid-latitudes, negative responses of several Kelvin have been observed, during winters, in the analyses of the datasets analyzed here. In the mesosphere, at sub-tropic and mid-latitude regions, we observe a positive response all the year round increasing by a factor of two during winter.  相似文献   

2.
The CRISTA/MAHRSI experiment on board a space shuttle was accompanied by a broad campaign of rocket, balloon and ground-based measurements. Supporting lower ionospheric ground-based measurements were run in Europe and Eastern Asia between 1 October–30 November, 1994. Results of comparisons with long ionospheric data series together with short-term comparisons inside the interval October-November, 1994, showed that the upper middle atmosphere (h =80–100 km) at middle latitudes of the Northern Hemisphere in the interval of the CRISTA/MAHRSI experiment (4–12 November, 1994) was very close to its expected climatological state. In other words, the average results of the experiment can be used as climatological data, at least for the given area/altitudes. The role of solar/geomagnetic and “meteorological” control of the lower ionosphere is investigated and compared with the results of MAP/WINE, MAC/SINE and DYANA campaigns. The effects of both solar/geomagnetic and global meteorological factors on the lower ionosphere are found to be weak during autumn 1994 compared to those in MAP/WINE and DYANA winters, and they are even slightly weaker than those in MAP/SINE summer. The comparison of the four campaigns suggests the following overall pattern: in winter the lower ionosphere at northern middle latitudes appears to be fairly well “meteorologically” controlled with a very weak solar influence. In summer, solar influence is somewhat stronger and dominates the weak “meteorological” influence, but the overall solar/meteorological control is weaker than in winter. In autumn we find the weakest overall solar/meteorological control, local effects evidently dominate.  相似文献   

3.
Annual growth rates and the ratio of dark to light-colored calcite within single annual laminae in three contemporaneously deposited Holocene speleothems from Grotta di Ernesto, an Alpine cave in northern Italy, respond to changes in surface temperature rather than precipitation. Based on monitoring of present-day calcite growth, and correlation with instrumental data for surface climatic conditions, we interpret a higher ratio of dark to light-colored calcite and the simultaneous thinning of annual laminae as indicative of colder-than-present winters. Such dark and thin laminae occur in those parts of the three stalagmites deposited from AD 1650 to 1713 and from AD 1798 to 1840, as reconstructed through lamina counting. These periods correspond to the well-known Maunder and Dalton Minima of solar activity. An 11-yr cyclicity in growth rate, coupled with reduced calcite deposition during the historic minima of solar activity, is indicative of a solar influence on lamina thickness. Spectral analysis of the lamina thickness data also suggests that the North Atlantic Oscillation variability influenced winter temperatures. Based on the present-day controls on cave calcite formation, we infer that high-frequency changes in solar activity modulated the seasonal duration of soil CO2 production.  相似文献   

4.
This paper investigates the dependence of the observed coronal mass ejections and their parameters on evolutionary changes in the global solar magnetic field at different phases of solar cycles 23?C24. Four periods in the evolution of the solar cycle are identified, depending on the dominance ratio of the sectoral and zonal magnetic field structures. The parameters of coronal mass ejections observed during these periods are analyzed. The evolving structure in the global magnetic field is identified, and its influence on coronal mass ejections is examined.  相似文献   

5.
The possible contribution of solar and geomagnetic activity to changes in the characteristics of the main components of the climatic system—the ocean and the atmosphere—is considered and discussed. The mechanisms and models of the solar activity impact on thermobaric and climatic characteristics of the troposphere are presented. Based on a complex analysis of hydrometeorological data, it has been shown that changes in the temperature of the troposphere and the World Ocean reflect a response both to individual helio-geophysical perturbations and to long-term changes (1854–2015) of solar and geomagnetic activity. It is established that the climatic response to the influence of solar and geomagnetic activity is characterized by considerable spatio-temporal heterogeneity, is of a regional nature, and depends on the general circulation of the atmosphere. The largest contribution of solar activity to the global climate changes was observed in the period 1910–1943.  相似文献   

6.
Predicting global climate change is a great challenge and must be based on a thorough understanding of how the climate system components behave. Precipitable water vapor (PWV) is one of the key components in determining and predicting the global climate system. It is well known that the local surface temperature and pressure have a direct influence on the production of PWV. However, the influence of solar activity on atmospheric dynamics and their physical mechanisms is still an open debate, where past studies are focused at mid-latitude regions. A new method of determining and quantifying the solar influence on PWV based on GPS observations to correlate the GPS PWV and total electron content (TEC) variations is proposed. Observed data from Scott Base (SBA) and McMurdo (MCM) stations from 2003 to 2005 have been used to study the response of PWV to solar activity. In the analysis, the effects of local conditions (wind speed and relative humidity) on the distribution of PWV are investigated. Results show significant correlation between PWV and solar activity for four geomagnetic storms, with correlation coefficients of 0.74, 0.77, 0.64 and 0.69, which are all significant at the 95% confidence level. There was no significant correlation between TEC and PWV changes during the absence of storms. On a monthly analysis, a strong relationship exists between PWV and TEC during storm-affected days, with correlation coefficients of 0.83 and 0.89 (99% confidence level) for SBA and MCM respectively. These indicate a statistically significant seasonal signal in the Antarctic region, which is very active (higher) during the summer and inactive (lower) for the winter periods.  相似文献   

7.
Reconstructions of solar activity in the past epochs based on information on the past atmospheric content of the cosmogenic 14C isotope are nowadays actively discussed. The 14C isotope is generated in the atmosphere of the Earth under the influence of cosmic rays, and its concentration in annual tree rings carries information on the past solar activity. However, the concentration of this isotope in annual tree rings may also be influenced by climatic factors. In the present work, the possible correlation between variations in the 14C atmospheric content and in the Earth’s global temperature from the late 14th century to the middle of the 19th century is studied. It is shown that variations in global temperature may produce changes in the 14C atmospheric content and consequently have to be taken into account in reconstructions of the past solar activity.  相似文献   

8.
申彦波  王彪 《地球物理学报》2011,54(6):1457-1465
太阳是地球表层的最终能量来源,地面太阳辐射的变化会深刻影响地球的气候变化.本文利用中国东南地区14个气象台站1961~2008年总辐射和气温的同步观测资料,分析了近50年该地区地面太阳辐射的变化对气温变化的可能影响.结果表明,1961~1989年期间,该地区的地面太阳辐射显著减弱,所引起的气温下降超过了其他因素的增温效...  相似文献   

9.
The Global Atmospheric Electrical Circuit and Climate   总被引:2,自引:1,他引:2  
Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescales.  相似文献   

10.
The availability of global gridded precipitation and outgoing long-wave radiation (OLR) data after 1978 makes possible an investigation of the influence of the decadal solar oscillation in the tropics during three solar maxima and two solar minima. The NCEP/NCAR reanalyses starting in the 1950s allows the inclusion of an additional two solar maxima and minima to look for consistency of response across a longer time period. In the northern summer (July–August), the major climatological tropical precipitation maxima are intensified in solar maxima compared to solar minima during the period 1979–2002. The regions of this enhanced climatological precipitation extend from the Indian monsoon to the West Pacific oceanic warm pool and farther eastwards in the Intertropical Convergence Zone of the North Pacific and North American Monsoon, to the tropical Atlantic and greater rainfall over the Sahel and central Africa. The differences between solar maxima and minima in the zonal mean temperature through the depth of the troposphere, OLR, tropospheric vertical motion, and tropopause temperature are consistent with the differences in the rainfall. The upward vertical motion is stronger in regions of enhanced tropical precipitation, tropospheric temperatures are higher, tropopause temperatures are lower, and the OLR is reduced due to higher, colder cloud tops over the areas of deeper convective rainfall in the solar maxima than in the minima. These differences between the extremes of the solar cycle suggest that an increase in solar forcing intensifies the Hadley and Walker circulations, with greater solar forcing resulting in strengthened regional climatological tropical precipitation regimes. These effects are as strong or even more pronounced when warm and cold extremes in the Southern Oscillation are removed from the analyses. Additionally, lower stratospheric temperatures and geopotential heights are higher with greater solar forcing suggesting ozone interactions with solar forcing in the upper stratosphere.  相似文献   

11.
The effects of cloud shadowing, channelling, cloud side illumination and droplet concentration are investigated with regard to the reflection of shortwave solar radiation. Using simple geometric clouds, coupled with a Monte Carlo model the transmission properties of idealized cloud layers are found. The clouds are illuminated with direct solar radiation from above. The main conclusion reached is that the distribution of the cloud has a very large influence on the reflectivity of a cloud layer. In particular, if the cloud contains vertical gaps through the cloud layer in which the liquid water content is zero, then, smaller more numerous gaps are more influential on the radiation than fewer, larger gaps with equal cloud fraction. At very low solar zenith angles channelling of the radiation reduces the reflection expected on the basis of the percentage cloud cover. At high solar zenith angles the illumination of the cloud edges significantly increases the reflection despite the shadowing of one cloud by another when the width of the gaps is small. The impact of droplet concentration upon the reflection of cloud layers is also investigated. It is found that at low solar zenith angles where channelling is important, the lower concentrations increase the transmission. Conversely, when cloud edge illumination is dominant the cloud distribution is found to be more important for the higher concentrations.  相似文献   

12.
Water vapor plays an important role in the global climate system. A clear relationship between water vapor and solar activity can explain some physical mechanisms of how solar activity influences terrestrial weather/climate changes. To gain insight of this possible relationship, the atmospheric precipitable water vapor (PWV) as the terrestrial climate response was observed by ground-based GPS receivers over the Antarctic stations. The PWV changes analyzed for the period from 2003 to 2008 coincided with the declining phase of solar cycle 23 exhibited following the solar variability trend. Their relationship showed moderate to strong correlation with 0.45 < R 2 < 0.93 (p < 0.01), on a monthly basis. This possible relationship suggests that when the solar-coupled geomagnetic activity is stronger, the Earth’s surface will be warmer, as indicated by electrical connection between ionosphere and troposphere.  相似文献   

13.
Numerous studies of interrelations between solar activity and global climate changes report contradictory conclusions. The topic as such is too complex, and manifestations of the studied relationship appear to differ in time and space, and sometimes are even of the opposite sense, In this study the data on air temperature and precipitation totals from Hurbanovo, one of the oldest meteorological observatories in Europe, are used to study their evolution within the interval 1871–1995, covering solar cycles 12–22, The variability of the meteorological elements mentioned is compared with that of the sunspot number and aa index of geomagnetic activity. The sensitivity of climate changes to variable solar forcing is presented as a comparison of extreme (maximum/minimum) activity conditions. Harmonic components with periods close to the length of the solar secular and solar magnetic cycles were found in climate evolution profiles.  相似文献   

14.
The Indian summer monsoon rainfall (ISMR) plays an important role in the climate system of South Asia. Recently, studies about ISMR variations have been going into more depth. In this present paper, we mainly use the Scargle periodogram and wavelet transform methods to study the periodicity of ISMR changes between 1871 and 2004 and review the possible influence of solar activity on the rainfall. Analysis results show complicated ISMR variations have periodicities with remarkable time-variable characteristics. Investigating a possible connection between the rainfall and solar variations, we believe that solar activity affects the ISMR variations to some extent.  相似文献   

15.
Solar proton events and evolution of cyclones in the North Atlantic   总被引:1,自引:1,他引:0  
The influence of solar proton events (SPEs) with particle energies > 90 MeV on the evolution of extratropical cyclones in the North Atlantic is studied. A substantial intensification of the regeneration (secondary deepening) of cyclones near the southeastern Greenland coast after the SPE onset is detected. It is shown that the observed deepening of cyclones is caused by intensified advection of cold when the zone of the Arctic front in the region of the Greenland coast is approached. The results allow us to assume that SPEs with the above particle energies cause substantial changes in the structure of the thermobaric field of the subpolar and high-latitude troposphere, which form more favorable conditions for the regeneration of cyclones. In this case the role of the Arctic vertical frontal zone is apparently important. Temperature field changes can be caused by the radiation effects of variations in the upper cloudiness.  相似文献   

16.
太阳活动对印度夏季风降水的可能影响   总被引:2,自引:0,他引:2  
印度夏季风降水在南亚气候系统中是一个非常重要的内容,近年来对它的研究日益受到人们的重视.本文主要结合Scargle周期图和小波分析的方法研究了1871-2004年间该降水变化的周期性.结果表明,该降水变化非常复杂,其周期性波动具有明显的时变特征.进一步考察了印度夏季风降水与太阳活动的可能关联后,作者认为太阳活动在一定程度上影响印度的夏季风降水.  相似文献   

17.
Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba), mid-latitude (Volgograd) and high-latitude (Heiss Island) regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2-3% from its mean value in the stratosphere and increases by 4-6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16-18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth’s atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.  相似文献   

18.
We tested the validity of two current hypotheses on the dependence of climate change on solar activity. One of them states that variations in the tropospheric temperature are caused directly by changes of the solar radiance (total or spectral). The other suggests that cosmic ray (CR) fluctuations, caused by the solar/heliospheric modulation, affect the climate via cloud formation. Confronting these hypotheses with seven different sets of the global/hemispheric temperature reconstructions for the last 400 years, we found that the former mechanism is in general more prominent than the latter. Therefore, we can conclude that in so far as the Sun–climate connection is concerned tropospheric temperatures are more likely affected by variations in the UV radiation flux rather than by those in the CR flux.  相似文献   

19.
The influence of the earthquake probability diurnal variation on specific features in the weekend effect in global seismic activity is revealed. The dependence of the global earthquake number on the local time and its possible relation to a quiet solar diurnal variation (Sq) in the geomagnetic field have been considered in detail. It has been indicated that a stable diurnal effect, which has a maximum near midnight and a minimum near local noon, exists in the global seismicity of the Earth. The diurnal variation amplitude changes insignificantly during days of week and substantially decreases (by a factor of almost 3) on Saturday and Sunday. The weekend effect is not revealed during “local nights.” Since the daily effect of a quiet solar diurnal variation (Sq) should not depend on days of week, we arrive at the conclusion that the diurnal variation in global seismicity evidently contains the anthropogenic activity product. The Sunday effect in the earthquake number decreases over the course of time and is most probably real but weak and not stationary since weekly variations occur against a background (or under the action) of stronger variations, i.e., an increase in the earthquake number and diurnal variations.  相似文献   

20.
The combined observing power of the Yohkoh, SOHO and TRACE spacecraft, along with the continuing ground-based observations has proved invaluable for the detection of changes in the magnetic morphology preceding coronal mass ejections (CMEs). A wide range of activity from small scale dimmings to large scale eruptions covering half the solar disk have been observed. The relationship between flares and CMEs has also become clearer. Rather than one event causing the other it would seem that it is a global change in the magnetic field which causes both. Recently, there has been a lot of interest in the sigmoid (S-shaped) structures seen in soft X-rays. The likelihood of a CME occurring appears to increase if there is a sigmoidal structure observed. This has formed the basis of more extensive studies into predicting the time and location of a CME from the changes in behaviour of features on the solar disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号