共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
遥感图像分类应用研究综述 总被引:6,自引:1,他引:6
对目前遥感图像分类方法应用研究进行了总结,在此基础上对其在地学应用研究中存在的问题进行了分析,得出了一些有益的结论,以期为遥感图像分类应用提供参考。 相似文献
3.
遥感图像分区自动分类方法研究 总被引:28,自引:2,他引:28
对判读区域自然景观复杂,数据时相与质量差异较大的遥感图像用常规的分类方法难以达到令人满意的效果,为此,作者采用了一种通过定义图像判读区,分类管理器和改进监督分类算法等方法来实现遥感图像的分区自动分类,以不同时相的TM拼接图像进行分类试验,结果表明:该方法比传统的监督分类方法有明显改进:(1)与整幅图像用同一个标准进行分类的方案相比,其精度显著提高,(2)可在分类前灵活,任意生成所感兴趣的判读区域,(3)在每个分区内可以采取不同的分类方案进行分类,(4)每个分区的分类结果可以保存在同一个文件中,而不需要另外生成新的操作层.因此分类不受次数的限制,可保证分类结果的完整性,每个分区的分类结果也可以保存为单个分区的分类结果. 相似文献
4.
在遥感领域中,遥感图像分类是一项十分重要的内容,也是运用遥感技术手段提取地物类别信息的一个关键环节。本文以TM影像为研究对象,采用决策树分类方法进行研究分析,详细地论述了该分类方法的整个研究流程,并得到分类后的结果图,最后利用混淆矩阵和Kappa系数对分类后的结果进行精度分析。通过与最大似然分类方法进行比较发现,决策树分类方法的分类效果明显,分类精度较高,总体分类精度、kappa系数均达到90%以上,为遥感图像分类提供了广阔的发展前景。 相似文献
5.
6.
高光谱遥感图像的监督分类 总被引:1,自引:0,他引:1
图像分类是高光谱遥感图像分析与应用的重要手段。总结了目前用于高光谱图像监督分类的主要方法,包括最小距离法、最大似然法、神经元网络法和支持向量机法,分析了上述方法的特点,并探讨了高光谱遥感图像分类方法的发展趋势。 相似文献
8.
9.
目前普遍采用的分类器通常都是针对单一或小量任务而设计的,在小数据量的处理中能取得比较满意的结果。但对于海量遥感数据的处理,其在处理时效和分类精度方面还有待研究。本文以遥感图像场景分类任务为例,着重对遥感数据分类问题中几种典型分类方法的适用性进行比较研究,包括K近邻(KNN)、随机森林(RF),支持向量机(SVM)和稀疏表达分类器(SRC)等。分别从参数敏感性,训练样本数据量,待分类样本数据量和样本特征维数对分类器性能的影响等几个方面进行比较分析。实验结果表明:(1)KNN,RF和L0-SRC方法相比RBF-SVM,Linear-SVM和L1-SRC,受参数影响的程度更弱;(2)待分类样本固定的情况下,随着训练样本数目的增加,SRC类型分类方法的分类性能最佳,SVM类型方法次之,然后是RF和KNN,在总体分类时间上呈现出L0-SRCL1-SRCRFRBF-SVM/Linear-SVMKNN/L0-SRC-Batch的趋势;(3)训练样本固定的情况下,所有分类方法的分类精度几乎都不受待分类样本数目变化的影响,RBF-SVM方法性能最佳,其次是L1-SRC,然后是Linear-SVM,最后是RF和L0-SRC/L0-SRC-Batch,在总体分类时间上,L1-SRC和L0-SRC相比其他分类方法最为耗时;(4)样本特征维数的变化不仅影响分类器的运行效率,同时也影响其分类精度,其中SRC和KNN分类器器无需较高的特征维数即可获得较好的分类结果,SVM对高维特征具有较强的包容性和学习能力,RF分类器对特征维数增加则表现得并不敏感,特征维数的增加并不能对其分类精度的提升带来更多的贡献。总的来说,在大数据量的遥感数据分类任务中,现有分类方法具有良好的适用性,但是对于分类器的选择应当基于各自的特点和优势,结合实际应用的特点进行权衡和选择,选择参数敏感性较小,分类总体时间消耗低但分类精度相对较高的分类方法。 相似文献
10.
11.
基于证据理论的遥感图像分类方法探讨 总被引:2,自引:0,他引:2
遥感图像分类是一项十分重要而且复杂的问题。传统的图像分类方法多数是基于贝叶斯主观概率理论的图像分类方法,由于其在解决不确定性问题上存在诸多缺陷,近年来,将数学的证据理论应用于遥感图像分类已成为新的发展趋势。本文首先介绍了证据理论与贝叶斯主观概率理论对于解决不确定性问题的差异,证据理论的主要定义和算法。文中还重点介绍了证据理论用于模式识别的支持度函数,并将支持度应用于图像分类,得到像元级按大类(如土地利用的城镇用地、耕地、林地和水体)划分的支持度表面,然后进行硬分类叠加,得到初次分类结果,再进行精度评估。如果不满足精度要求,再对各类支持度小于某域值的像元进行二次分类,如此下去,直到达到分类所要求的精度。该方法的主要优点是可以进行分类后的再分类,且精度非常高,而贝叶斯分类不可以进行分类后的再分类,只能重新训练样本进行整体分类,效率低,精度也难提高。该方法理论可靠,实用性强,易操作,有研究潜力。 相似文献
12.
遥感图像分类与后处理综合技术研究—基于约束满足神经网络方法 总被引:3,自引:0,他引:3
遥感图像计算机分类的精度问题是阻碍计算机遥感信息处理系统实用化的一个关键问题。将分类后处理中的分类结果平滑过程模型化为约束优化问题,采用神经网络方法把分类结果平滑过程与遥感图像分类过程结合起来,提出了基于约束满足神经网络的遥感信息分类与后处理综合技术。实验表明该方法可明显提高森林类型划分、土地利用调查等遥感应用专题的分类精度。 相似文献
13.
遥感图像海量性、复杂性与多样性特征导致现有方法出现查全率、查准率低的问题,无法满足现今遥感图像应用的需求,故提出基于卷积神经网络-图像检索(Convolutional Neural Networks-Content-Based Image Retrieval,CNN-CBIR)的遥感图像分类检索方法研究.为了精确分类遥... 相似文献
14.
基于GOODALL相近指数的遥感图像和其它空间数据综合分类方法 总被引:2,自引:0,他引:2
介绍DavidW.Goodall基于概率的相近指数理论,研究它被应用在遥感图像和其它空间数据综合分类中的可能性,并首次在GRASS环境下实现了基于DavidW.Goodall的相近指数的遥感图像和其它空间数据综合分类算法,并对该算法进行了测试,将分类结果 与其它几种较流行的分类方法结果进行了比较。 相似文献
15.
为了弥补蝙蝠算法后期收敛速度慢、寻优精度不高、易陷入局部最优值的缺点,本文提出了一种新的遥感图像分类算法--GABA算法,该算法将遗传算法中的选择、交叉、变异操作应用到蝙蝠算法中,使蝙蝠算法具有变异机制,避免种群个体陷入局部最优,提高了算法全局寻优能力,增加了蝙蝠算法的多样性。同时,为了突出本文算法的优点,试验将蝙蝠算法、K-means算法、粒子群算法与本文算法结果进行比较,分析评价遥感图像的分类结果。试验表明本文算法在遥感图像分类应用中既提高了分类精度又减少了分类时间,是一种可行、有效的遥感图像分类方法。 相似文献
16.
基于混合像元的遥感图像分类技术 总被引:13,自引:0,他引:13
本文提出了混合像元的概念,研究了基于混合像元的遥感图像分类问题,根据最小二乘法的原理导出了混合像元的分类算法。实验表明:在多光谱图像分类中考虑混合像元的客观存在,可以大大提高遥感图像的分类精度。 相似文献
17.
针对传统图像检索方法存在的检索范围过大、检索效率低下的问题,提出了一种基于卷积神经网络和距离权重的图像检索方法(CNN-DW),该方法可以从海量遥感图像中检索出与查询图像具有相似或相同特征的检索图像,图像检索试验表明:CNN-DW检索法较传统卷积神经网络(Convolutional Neural Networks,CN... 相似文献
18.
多光谱遥感图像土地利用分类区域多中心方法 总被引:2,自引:0,他引:2
针对遥感图像土地利用一种类别由多种地物组成,存在难以求取类别光谱特征多元分布模型的问题,分析了多光谱遥感图像土地利用的光谱特征和区域多中心特征,提出了一种光谱信息和区域信息基于规则的区域多中心分类方法,以类别的类内中心集合表征类别模式,以区域为分类单元,以区域单元含类别类内中心数和区域单元中属于某种类别的像元占单元总像元的百分比为分类准则;采用类内中心表征类别模式和基于规则的分类方法,较好地解决了土地利用类别由多种地物组成、类别模式不满足多元正态分布的问题,由于类别区域单元多中心特性差异大,分类规则的建立及训练样本的选择易于实现。实验表明:该方法能提高分类精度4%—6%。 相似文献
19.
20.
随着教育与科技的发展,我国众多高校的课程体系都开设了"遥感图像解译"或"遥感原理与应用"等课程.遥感图像的监督分类,是遥感类课程不可或缺的教学内容.然而,在目前相关课程的实验教学中,存在教学内容陈旧、更新频率较低等问题.为了充实高校遥感类课程的实验教学,本文介绍了一套基于随机森林的遥感图像分类实验教学软件,包括软件开发与相关实验的设计.鉴于随机森林算法在遥感领域得到了广泛应用,本实验教学软件旨在使学生掌握更新的遥感数据处理技能,提升其在相关行业中的竞争力. 相似文献