首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop an approach to deriving the three-dimensional non-force-free coronal magnetic field from vector magnetograms. Based on the principle of minimum dissipation rate, a general non-force-free magnetic field is expressed as the superposition of one potential field and two constant-α (linear) force-free fields. Each is extrapolated from its bottom boundary data, providing the normal component only. The constant-α parameters are distinct and determined by minimizing the deviations between the numerically computed and measured transverse magnetic field at the bottom boundary. The boundary conditions required are at least two layers of vector magnetograms, one at the photospheric level and the other at the chromospheric level, presumably. We apply our approach to a few analytic test cases, especially to two nonlinear force-free cases examined by Schrijver et al. (Solar Phys. 235, 161, 2006). We find that for one case with small α parameters, the quantitative measures of the quality of our result are better than the median values of those from a set of nonlinear force-free methods. The reconstructed magnetic-field configuration is valid up to a vertical height of the transverse scale. For the other cases, the results remain valid to a lower vertical height owing to the limitations of the linear force-free-field solver. Because our method is based on the fast-Fourier-transform algorithm, it is much faster and easy to implement. We discuss the potential usefulness of our method and its limitations.  相似文献   

2.
We present a careful investigation of the magnetofrictional relaxation and extrapolation technique applied to the reconstruction of two test fields. These fields are taken from the family of nonlinear force-free magnetic equilibria constructed by Low and Lou (Astrophys. J. 352, 343, 1990), which have emerged as standard tests for extrapolation techniques in recent years. For the practically relevant case that only the field values in the bottom plane of the considered volume (vector magnetogram) are used as input information (i.e., not including the knowledge about the test field at the side and top boundaries), the test field is reconstructed to a higher accuracy than obtained previously. Detailed diagnostics of the reconstruction accuracy show that the implementation of fourth-order spatial discretization was essential to reach this accuracy for the given test fields and to achieve near machine precision in satisfying the solenoidal condition. Different variants of boundary conditions are tested, which all yield comparable accuracy. In its present implementation, the technique yields a scaling of computing time with total number of grid points only slightly below N 5/3, which is too steep for applications to large (≥10242) magnetograms, except on supercomputers. Directions for improvement are outlined.  相似文献   

3.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai (Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. (Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.  相似文献   

5.
Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96–1.19, 0.63–1.07 and 0.43–0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80–1.02, 0.67–1.34 and 0.33–0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of 〈|RSD|〉 is about 0.1∼0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.  相似文献   

6.
Brown  D.S.  Priest  E.R. 《Solar physics》2000,194(2):197-204
Potential fields and linear force-free fields are often used as models for the magnetic field of the Sun's corona. They can be written as analytical expressions in terms of boundary values at the photosphere. Because of their relative simplicity compared with nonlinear force-free fields, these two models are of particular importance in topological analysis of solar phenomena. However, it has been suggested by Hudson and Wheatland (1999) that the topologies of potential and force-free models are in general not even qualitatively equivalent. In this paper, their example is re-examined and it is found that the opposite conclusions hold. In general, potential and force-free fields are topologically similar sufficiently close to localized sources. The exception to this are structurally unstable states, such as bifurcation states, where a small change of current can produce a significant change of topology.  相似文献   

7.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

8.
The minimum dissipative rate (MDR) method for deriving a coronal non-force-free magnetic field solution is partially evaluated. These magnetic field solutions employ a combination of three linear (constant-α) force-free-field solutions with one being a potential field (i.e., α=0). The particular case of the solutions where the other two α’s are of equal magnitude but of opposite sign is examined. This is motivated by studying the SOLIS (Synoptic Optical Long-term Investigation of the Sun (SOLIS), a National Solar Observatory facility) vector magnetograms of AR 10987, which show a global α value consistent with an α=0 value as evaluated by (×B) z /B z over the region. Typical of the current state of the observing technology, there is no definitive twist for input into the general MDR method. This suggests that the special α case, of two α’s with equal magnitudes and opposite signs, is appropriate given the data. Only for an extensively twisted active region does a dominant, nonzero α normally emerge from a distribution of local values. For a special set of conditions, is it found that (i) the resulting magnetic field is a vertically inflated magnetic field resulting from the electric currents being parallel to the photosphere, similar to the results of Gary and Alexander (Solar Phys. 186:123, 1999), and (ii) for α≈(α max /2), the Lorentz force per unit volume normalized by the square of the magnetic field is on the order of 1.4×10−10 cm−1. The Lorentz force (F L) is a factor of ten higher than that of the magnetic force d(B 2/8π)/dz, a component of F L. The calculated photospheric electric current densities are an order of magnitude smaller than the maximum observed in all active regions. Hence both the Lorentz force density and the generated electric current density seem to be physically consistent with possible solar dynamics. The results imply that the field could be inflated with an overpressure along the neutral line. However, the implementation of this or any other extrapolation method using the electric current density as a lower boundary condition must be done cautiously, with the current magnetography.  相似文献   

9.
We focus on quantitative evaluation of several methods for the reconstruction of force-free magnetic fields in the solar corona. We have studied two topics. The first is to carry out a comparison test of two approaches to implement the optimization method: (1) using a boundary layer with a weighting function and (2) involving an optimization algorithm for unknown boundary field vector values. The second approach is shown to provide a better approximation to a desired true solution that is finite in an unlimited semispace. The approximation obtained by the second approach is reasonably close to the true solution up to the boundaries of the reconstruction region. Among the applications of the optimization method to real data, we demonstrate its ability to obtain accurate enough energy estimates and find that the pre- to post-flare energy difference is sufficient in powering the flare.  相似文献   

10.
Existing methods for calculating nonlinear force-free magnetic fields are slow, and are likely to be inadequate for reconstructing coronal magnetic fields based on high-resolution vector magnetic field data from a new generation of spectro-polarimetric instruments. In this paper a new implementation of the current-field iteration method is presented, which is simple, fast, and accurate. The time taken by the method scales as N 4, for a three-dimensional grid with N 3 points. The method solves the field-updating part of the iteration by exploiting a three-dimensional Fast Fourier Transform solution of Ampere’s law with a current density field constructed to satisfy the required boundary conditions, and uses field line tracing to solve the current-updating part of the iteration. The method is demonstrated in application to a known nonlinear force-free field and to a bipolar test case.  相似文献   

11.
12.
Inspired by the analogy between the magnetic field and velocity field of incompressible fluid flow, we propose a fluid dynamics approach for computing nonlinear force-free magnetic fields. This method has the advantage that the divergence-free condition is automatically satisfied, which is a sticky issue for many other algorithms, and we can take advantage of modern high resolution algorithms to process the force-free magnetic field. Several tests have been made based on the well-known analytic solution proposed by Low & Lou. The numerical results are in satisfactory agreement with the analytic ones. It is suggested that the newly proposed method is promising in extrapolating the active region or the whole sun magnetic fields in the solar atmosphere based on the observed vector magnetic field on the photosphere.  相似文献   

13.
A Monte Carlo approach to solving a stochastic-jump transition model for active-region energy (Wheatland and Glukhov: Astrophys. J. 494, 858, 1998; Wheatland: Astrophys. J. 679, 1621, 2008) is described. The new method numerically solves the stochastic differential equation describing the model, rather than the equivalent master equation. This has the advantages of allowing more efficient numerical solution, the modeling of time-dependent situations, and investigation of details of event statistics. The Monte Carlo approach is illustrated by application to a Gaussian test case and to the class of flare-like models presented in Wheatland (Astrophys. J. 679, 1621, 2008), which are steady-state models with constant rates of energy supply, and power-law distributed jump transition rates. These models have two free parameters: an index (δ), which defines the dependence of the jump transition rates on active-region energy, and a nondimensional ratio ( ) of total flaring rate to rate of energy supply. For the nondimensional mean energy of the active-region satisfies , resulting in a power-law distribution of flare events over many decades of energy. The Monte Carlo method is used to explore the behavior of the waiting-time distributions for the flare-like models. The models with δ≠0 are found to have waiting times that depart significantly from simple Poisson behavior when . The original model from Wheatland and Glukhov (Astrophys. J. 494, 858, 1998), with δ=0 (i.e., no dependence of transition rates on active-region energy), is identified as being most consistent with observed flare statistics.  相似文献   

14.
We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.  相似文献   

15.
We compare six algorithms for the computation of nonlinear force-free (NLFF) magnetic fields (including optimization, magnetofrictional, Grad–Rubin based, and Green's function-based methods) by evaluating their performance in blind tests on analytical force-free-field models for which boundary conditions are specified either for the entire surface area of a cubic volume or for an extended lower boundary only. Figures of merit are used to compare the input vector field to the resulting model fields. Based on these merit functions, we argue that all algorithms yield NLFF fields that agree best with the input field in the lower central region of the volume, where the field and electrical currents are strongest and the effects of boundary conditions weakest. The NLFF vector fields in the outer domains of the volume depend sensitively on the details of the specified boundary conditions; best agreement is found if the field outside of the model volume is incorporated as part of the model boundary, either as potential field boundaries on the side and top surfaces, or as a potential field in a skirt around the main volume of interest. For input field (B) and modeled field (b), the best method included in our study yields an average relative vector error En = 〈 |Bb|〉/〈 |B|〉 of only 0.02 when all sides are specified and 0.14 for the case where only the lower boundary is specified, while the total energy in the magnetic field is approximated to within 2%. The models converge towards the central, strong input field at speeds that differ by a factor of one million per iteration step. The fastest-converging, best-performing model for these analytical test cases is the Wheatland, Sturrock, and Roumeliotis (2000) optimization algorithm as implemented by Wiegelmann (2004).  相似文献   

16.
We present three-dimensional unsteady modeling and numerical simulations of a coronal active region, carried out within the compressible single-fluid MHD approximation. We focus on AR 9077 on 14 July 2000, and the triggering of the X5.7 GOES X-ray class “Bastille Day” flare. We simulate only the lower corona, although we include a virtual photosphere and chromosphere below. The boundary conditions at the base of this layer are set using temperature maps from line intensities and line-of-sight magnetograms (SOHO/MDI). From the latter, we generate vector magnetograms using the force-free approximation; these vector magnetograms are then used to produce the boundary condition on the velocity field using a minimum energy principle (Longcope, Astrophys. J. 612, 1181, 2004). The reconnection process is modeled through a dynamical hyper-resistivity which is activated when the current exceeds a critical value (Klimas et al., J. Geophys. Res. 109, 2218, 2004). Comparing the time series of X-ray fluxes recorded by GOES with modeled time series of various mean physical variables such as current density, Poynting energy flux, or radiative loss inside the active region, we can demonstrate that the model properly captures the evolution of an active region over a day and, in particular, is able to explain the initiation of the flare at the observed time.  相似文献   

17.
Yan  Yihua  Sakurai  Takashi 《Solar physics》2000,195(1):89-109
A boundary integral equation to describe a force-free magnetic field with finite energy content in the open space above the solar surface is found. This is a new representation for a 3-D nonlinear force-free field in terms of the boundary field and its normal gradient at the boundary. Therefore the magnetic field observed on the solar surface can be incorporated into the formulation directly and a standard numerical technique, the boundary element method, can be applied to solve the field. A numerical test case demonstrates the power of the method by recovering the analytical solution to the desired accuracy and its application to practical solar magnetic field problems is straightforward and promising.  相似文献   

18.
Wheatland  M.S.  Farvis  F.J. 《Solar physics》2004,219(1):109-123
Circuit models involving bulk currents and inductances are often used to estimate the energies of coronal magnetic field configurations, in particular configurations associated with solar flares. The accuracy of circuit models is tested by comparing calculated energies of linear force-free fields with specified boundary conditions with corresponding circuit estimates. The circuit models are found to provide reasonable (order of magnitude) estimates for the energies of the non-potential components of the fields, and to reproduce observed functional dependences of the energies. However, substantial departure from the circuit estimates is observed for large values of the force-free parameter, and this is attributed to the influence of the non-potential component of the field on the path taken by the current.  相似文献   

19.
本文从能量原理出发,对无力场稳定性进行了研究,给出了一般情形下无力场稳定性的充要判据。它可以把线性无力场稳定性判据作为特例包括在内。还对Kruger给出的一个充分判据作了进一步的探讨,对无力场稳定性的物理图象也作了讨论。  相似文献   

20.
Wiegelmann  T. 《Solar physics》2004,219(1):87-108
We developed a code for the reconstruction of nonlinear force-free and non-force-free coronal magnetic fields. The 3D magnetic field is computed numerically with the help of an optimization principle. The force-free and non-force-free codes are compiled in one program. The force-free approach needs photospheric vector magnetograms as input. The non-force-free code additionally requires the line-of-sight integrated coronal density distribution in combination with a tomographic inversion code. Previously the optimization approach has been used to compute magnetic fields using all six boundaries of a computational box. Here we extend this method and show how the coronal magnetic field can be reconstructed only from the bottom boundary, where the boundary conditions are measured with vector magnetographs. The program is planed for use within the Stereo mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号