首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports acreage, yield and production forecasting of wheat crop using remote sensing and agrometeorological data for the 1998–99 rabi season. Wheat crop identification and discrimination using Indian Remote Sensing (IRS) ID LISS III satellite data was carried out by supervised maximum likelihood classification. Three types of wheat crop viz. wheat-1 (high vigour-normal sown), wheat-2 (moderate vigour-late sown) and wheat-3 (low vigour-very late sown) have been identified and discriminated from each other. Before final classification of satellite data spectral separability between classes were evaluated. For yield prediction of wheat crop spectral vegetation indices (RVI and NDVI), agrometeorological parameters (ETmax and TD) and historical crop yield (actual yield) trend analysis based linear and multiple linear regression models were developed. The estimated wheat crop area was 75928.0 ha. for the year 1998–99, which sowed ?2.59% underestimation with land record commissioners estimates. The yield prediction through vegetation index based and vegetation index with agrometeorological indices based models were 1753 kg/ha and 1754 kg/ha, respectively and have shown relative deviation of 0.17% and 0.22%, the production estimates from above models when compared with observed production show relative deviation of ?2.4% and ?2.3% underestimations, respectively.  相似文献   

2.
Both of crop growth simulation models and remote sensing method have a high potential in crop growth monitoring and yield prediction. However, crop models have limitations in regional application and remote sensing in describing the growth process. Therefore, many researchers try to combine those two approaches for estimating the regional crop yields. In this paper, the WOFOST model was adjusted and regionalized for winter wheat in North China and coupled through the LAI to the SAIL–PROSPECT model in order to simulate soil adjusted vegetation index (SAVI). Using the optimization software (FSEOPT), the crop model was then re-initialized by minimizing the differences between simulated and synthesized SAVI from remote sensing data to monitor winter wheat growth at the potential production level. Initial conditions, which strongly impact phenological development and growth, and which are hardly known at the regional scale (such as emergence date or biomass at turn-green stage), were chosen to be re-initialized. It was shown that re-initializing emergence date by using remote sensing data brought simulated anthesis and maturity date closer to measured values than without remote sensing data. Also the re-initialization of regional biomass weight at turn-green stage led that the spatial distribution of simulated weight of storage organ was more consistent to official yields. This approach has some potential to aid in scaling local simulation of crop phenological development and growth to the regional scale but requires further validation.  相似文献   

3.
A field experiment was conducted on wheat crop during rabi seasons of 1995–96, 1996–97 and 1997–98 to study the spectral response of wheat crop (between 490 to 1080 nm) under water and nutrient stress condition. An indigenously developed ground truth radiometer having narrow band in visible and near infrared region (490 – 1080 nm) was used. Vegetation indices derived using different band combinations and related to crop growth parameters. The near infrared spectral region of 710 – 1025 nm was found most important for monitoring stress condition. Relationship has been developed between crop growth parameters and vegetation indices. Leaf Area Index (LAI) and chlorophyll could be predicted by knowing different reflectance ratios at milking stage of crop with R2 value of 0.78 and 0.89, respectively. Dry biomass (DBM), Plant Water Content (PWC) and grain yield are also significantly related with reflectance ratios at flowering stage of crop with R2 value of 0.90, 0.98 and 0.74, respectively.  相似文献   

4.
Crop yield is mainly dependent on weather, soil and technological inputs. Yield forecasting models have been developed mainly using multiple regression techniques based on biometrical characters of the plants and/or weather parameters. Matiset al. (1985) proposed another approach of crop yield modelling using Markov Chain theory based on biometrical characters. The integration of remote sensing with other technologies has provided an immense scope to improve upon the existing crop yield models. In the present study, multi date spectral data during crop growth period was used in Markov Chain Model to forecast wheat yield. The results indicate that the use of spectral data near the maximum vegetative growth of wheat crop improves the efficiency and reliability of yield forecast about a month before its actual harvest.  相似文献   

5.
Penman–Monteith method adapted to satellite data was used for the estimation of wheat crop evapotranspiration during the entire growth period using satellite data together with ground meteorological measurements. The IRS-1D/IRS-P6 LISS-III sensor data at 23.5 m spatial resolution for path 096 and row 059 covering the study area were used to derive, albedo, normalized difference vegetation index, leaf area index and crop height and then to estimate wheat crop evapotranspiration referred to as actual evapotranspiration (ETact). The ETact varied from 0.86 to 3.41 mm/day during the crop growth period. These values are on an average 16.40 % lower than wheat crop potential evapotranspiration (ETc) estimated as product of reference crop evapotranspiration estimated by Penman–Monteith method and lysimetric crop coefficient (Kc). The deviation of ETact from ETc is significant, when both the values were compared with t test for paired two sample means. Though the observations on ETact were taken from well maintained unstressed experimental plot of 120 × 120 m size, there was significant deviation. This deviation could be attributed to, the satellite images representing the actual crop evapotranspiration as function crop canopy biophysical parameters, condition of the crop stand, climatic and soil conditions and the microclimate variation over area of one hectare. However, Penman–Monteith method represents a flat rate of specific growth stage of the crop.  相似文献   

6.
An experiment was conducted during 1996–97 and 1997–98 to study spectral indices and their relationships with grain yield of wheat. Variations of ratio vegetation index (RVI), normalized differences vegetation index (NDVI). difference vegetation index (DVI), transformed vegetation index (TVI), perpendicular vegetation index (PVI) and greenness vegetation index (GVI) have been studied at anthesis stage under different moisture and nitrogen levels. Spectral indices were correlated with crop parameters and it was found that GVI was the best index for yield estimation (r = 0.91 ).  相似文献   

7.
为了进一步提高冬小麦产量估测的精度,基于集合卡尔曼滤波算法和粒子滤波(particle filter, PF)算法,对CERES–Wheat模型模拟的冬小麦主要生育期条件植被温度指数(vegetation temperature condition index,VTCI)、叶面积指数(leaf area index, LAI)和中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer, MODIS)数据反演的VTCI、LAI进行同化,利用主成分分析与Copula函数结合的方法构建单变量和双变量的综合长势监测指标,建立冬小麦单产估测模型,并通过对比分析选择最优模型,对2017—2020年关中平原的冬小麦单产进行估测。结果表明,单点尺度的同化VTCI、同化LAI均能综合反映MODIS观测值和模型模拟值的变化特征,且PF算法具有更好的同化效果;区域尺度下利用PF算法得到的同化VTCI和LAI所构建的双变量估产模型精度最高,与未同化VTCI和LAI构建的估产模型精度相比,研究区各县(区)的冬小麦估测单产与实际单产的均方根误差降低了56.25 kg/hm2,平均相对误差降低了1.51%,表明该模型能有效提高产量估测的精度,应用该模型进行大范围的冬小麦产量估测具有较好的适用性。  相似文献   

8.
The most important advantage of the low resolution National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (NOAA AVHRR) data is its high temporal frequency and high radiometric sensitivity which helps in vegetation detection in the visible and near-infrared spectral regions. In areas where most of the crop cultivation is in large contiguous areas, and if the AVHRR data are selected for time period such that the crop of interest is well discriminated from other crops, these data can be used for monitoring vegetative growth and condition very effectively. The present study deals with the application of AVHRR data for the monitoring of the wheat crop in its seventeen main growing districts of the Rajasthan state. The fourteen date AVHRR data covering the entire growth period have been used to generate the normalized difference vegetation index (NDV1) growth profile for the crop by masking the non-crop pixels following the two-date NDVI change method. The growth profile parameters and other derived parameters, such as post-anthesis senescence rate and areas under the entire growth profile or under selected growth periods have been related to the district average wheat yield through statistical regression models. Various methods adopted for wheat pixels masking have been critically evaluated. It is found that the wheat yield can be predicted well by the area under the profile in different growth periods.  相似文献   

9.
Field experiment was carried out on sandy loam soil with sorghum (cv. S-136), maize (cv. Ageti-76) and pearl millet (cv. PHB-14) during the summer season (may–July) of 1980 at Haryana Agricultural University Farm, Hisar. After one uniform irrigation at crop establishment, the crops were subjected to four irrigation treatments, viz. irrigation at ID/CPE (ID=irrigation depth of 7cm; CPE=cumulative pan evaporation) of 1.0, 0.6, 0.3 & 0.15. Changes in soil water potential (ψ soil), leaf water potential (ψ L), stomatal conductance (KL), canopy temperature (Tc), transpirational cooling (Canopy temperature minus air temperature, Tc-Ta), evapotranspiration (ET) and dry matter yields were recorded in different treatments. An increase in moisture stress resulted in a decrease in ψ soil, ψ L, KL, transpirational cooling, ET but increase in Tc. Tc-Ta showed significant curvilinear association with ψ soil and linear relationship with ψ L, KL, Tc, ET and dry matter yield of summer cereals. It is suggested that the mid day values of Tc-Ta as observed with an infra-red thermometer could effectively be used to sense the moisture stress effects in summer cereals.  相似文献   

10.
Ukraine is one of the most developed agriculture countries and one of the biggest crop producers in the world. Timely and accurate crop yield forecasts for Ukraine at regional level become a key element in providing support to policy makers in food security. In this paper, feasibility and relative efficiency of using moderate resolution satellite data to winter wheat forecasting in Ukraine at oblast level is assessed. Oblast is a sub-national administrative unit that corresponds to the NUTS2 level of the Nomenclature of Territorial Units for Statistics (NUTS) of the European Union. NDVI values were derived from the MODIS sensor at the 250 m spatial resolution. For each oblast NDVI values were averaged for a cropland map (Rainfed croplands class) derived from the ESA GlobCover map, and were used as predictors in the regression models. Using a leave-one-out cross-validation procedure, the best time for making reliable yield forecasts in terms of root mean square error was identified. For most oblasts, NDVI values taken in April–May provided the minimum RMSE value when comparing to the official statistics, thus enabling forecasts 2–3 months prior to harvest. The NDVI-based approach was compared to the following approaches: empirical model based on meteorological observations (with forecasts in April–May that provide minimum RMSE value) and WOFOST crop growth simulation model implemented in the CGMS system (with forecasts in June that provide minimum RMSE value). All three approaches were run to produce winter wheat yield forecasts for independent datasets for 2010 and 2011, i.e. on data that were not used within model calibration process. The most accurate predictions for 2010 were achieved using the CGMS system with the RMSE value of 0.3 t ha−1 in June and 0.4 t ha−1 in April, while performance of three approaches for 2011 was almost the same (0.5–0.6 t ha−1 in April). Both NDVI-based approach and CGMS system overestimated winter wheat yield comparing to official statistics in 2010, and underestimated it in 2011. Therefore, we can conclude that performance of empirical NDVI-based regression model was similar to meteorological and CGMS models when producing winter wheat yield forecasts at oblast level in Ukraine 2–3 months prior to harvest, while providing minimum requirements to input datasets.  相似文献   

11.
农作物单产预测的运行化方法   总被引:8,自引:2,他引:8  
提出了适于运行化农作物单产预测的方法。即以农作物单产区划为基础 ,通过搜集不同地区不同作物的单产预测模型 ,分析每个模型的空间适用范围 ,并从模型参数等角度筛选模型 ,然后利用这些模型进行气象站点的作物单产预测 ,并以NDVI分布图为参考数据将点上的单产数据空间外推到区域尺度。借助耕地分布估计区域水平的农作物单产。最后以 2 0 0 3年冬小麦为例 ,进行了全国 10个省的冬小麦平均单产估算 ,花费了较少的人力和时间 ,符合运行化遥感估产要求  相似文献   

12.
本文以北京顺义县为例,以气象因子与垂直植被指数(PVI)作为参数,用灰色模型G(0,2)和逐段订正模型即阶乘模型,建立冬小表遥感信息-气象因子综合模型。计算结果表明,改进后的综合模型其平均精度比单纯的遥感信息模型提高近7%,个别年份达到10%以上。  相似文献   

13.
针对中国开展的国外农作物产量遥感估测大多依靠中低分辨率耕地信息、省级(州级)或国家级作物产量统计数据的现状,本文以美国玉米为例,探讨利用多年中高分辨率作物分布信息、时序遥感植被指数和县级作物产量统计数据开展国外重点地区作物单产遥感估测技术研究,以期进一步提高中国对国外农作物产量监测精度和精细化水平。首先,利用美国农业部国家农业统计局(NASS/USDA)生产的作物分布数据(CDL)获得多个年份玉米空间分布图,并对相应年份250 m分辨率16天合成的MODIS-NDVI时序数据进行掩膜处理,统计获得每年各县域内玉米主要生育期NDVI均值;其次,以各州为估产区,以多年县级玉米统计单产和县域内玉米主要生育期NDVI均值为基础,建立各州玉米主要生育期NDVI与玉米单产间关系模型;然后,通过主要生育期玉米单产和玉米植被指数间拟合程度,筛选确定各州玉米最佳估产期和最佳估产模型。最终,利用最佳估产模型实现美国各州玉米单产估测和全国玉米单产推算。其中,建模数据覆盖时间为2007年—2010年,验证数据为2011年。结果表明,应用最佳估产模型的2011年美国各州玉米单产估测相对误差在-4.16%—4.92%,均方根误差在148.75—820.93 kg/ha,各州估测结果计算获得全国玉米单产的相对误差仅为2.12%,均方根误差为285.57 kg/ha。可见,本研究的作物单产遥感估测技术方法具有一定可行性,可准确估测全球重点地区作物单产信息。  相似文献   

14.
Spatial and temporal information on plant and soil conditions is needed urgently for monitoring of crop productivity. Remote sensing has been considered as an effective means for crop growth monitoring due to its timely updating and complete coverage. In this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification. The study site was located in the Sacramento Valley, in California where the cropping system is relatively diverse. Full season polarimetric signatures, as well as scattering mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and polarimetric decomposition (Cloude–Pottier and Freeman–Durden) parameters, respectively. The separability amongst crop types was assessed across a full calendar year based on both linear polarizations and decomposition parameters. The unique structure-related polarimetric signature of each crop was provided by multitemporal UAVSAR data with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa demonstrated stable radar backscattering values across the growing season, whereas winter wheat and summer crops (corn, sunflower, and tomato) presented drastically different patterns, with rapid increase from the emergence stage to the peak biomass stage, followed by a significant decrease during the senescence stage. In general, the polarimetric signature was heterogeneous during June and October, while homogeneous during March-to-May and July-to-August. The scattering mechanisms depend heavily upon crop type and phenological stage. The primary scattering mechanism for tree crops was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during March-to-September. Surface scattering was also dominant (>40%) for summer crops across the growing season except for sunflower and tomato during June and corn during July-to-October when volume scattering (>40%) was the primary scattering mechanism. Crops were better discriminated with decomposition parameters than with linear polarizations, and the greatest separability occurred during the peak biomass stage (July-August). All crop types were completely separable from the others when simultaneously using UAVSAR data spanning the whole growing season. The results demonstrate the feasibility of L-band SAR for crop monitoring and classification, without the need for optical data, and should serve as a guideline for future research.  相似文献   

15.
The present study investigates the characteristics of CO2 exchange (photosynthesis and respiration) over agricultural site dominated by wheat crop and their relationship with ecosystem parameters derived from MODIS. Eddy covariance measurement of CO2 and H2O exchanges was carried out at 10 Hz interval and fluxes of CO2 were computed at half-hourly time steps. The net ecosystem exchange (NEE) was partitioned into gross primary productivity (GPP) and ecosystem respiration (R e) by taking difference between day-time NEE and respiration. Time-series of daily reflectance and surface temperature products at varying resolution (250–1000 m) were used to derive ecosystem variables (EVI, NDVI, LST). Diurnal pattern in Net ecosystem exchange reveals negative NEE during day-time representing CO2 uptake and positive during night as release of CO2. The amplitude of the diurnal variation in NEE increased as LAI crop growth advances and reached its peak around the anthesis stage. The mid-day uptake during this stage was around 1.15 mg CO2 m−2 s−1 and night-time release was around 0.15 mg CO2 m−2 s−1. Linear and non-linear least square regression procedures were employed to develop phenomenological models and empirical fits between flux tower based GPP and NEE with satellite derived variables and environmental parameters. Enhanced vegetation index was found significantly related to both GPP and NEE. However, NDVI showed little less significant relationship with both GPP and NEE. Furthemore, temperature-greenness (TG) model combining scaled EVI and LST was parameterized to estimate daily GPP over dominantly wheat crop site. (R 2 = 0.77). Multi-variate analysis shows that inclusion of LST or air temperature with EVI marginally improves variance explained in daily NEE and GPP.  相似文献   

16.
The significance of crop yield estimation is well known in agricultural management and policy development at regional and national levels. The primary objective of this study was to test the suitability of the method, depending on predicted crop production, to estimate crop yield with a MODIS-NDVI-based model on a regional scale. In this paper, MODIS-NDVI data, with a 250 m resolution, was used to estimate the winter wheat (Triticum aestivum L.) yield in one of the main winter-wheat-growing regions. Our study region is located in Jining, Shandong Province. In order to improve the quality of remote sensing data and the accuracy of yield prediction, especially to eliminate the cloud-contaminated data and abnormal data in the MODIS-NDVI series, the Savitzky–Golay filter was applied to smooth the 10-day NDVI data. The spatial accumulation of NDVI at the county level was used to test its relationship with winter wheat production in the study area. A linear regressive relationship between the spatial accumulation of NDVI and the production of winter wheat was established using a stepwise regression method. The average yield was derived from predicted production divided by the growing acreage of winter wheat on a county level. Finally, the results were validated by the ground survey data, and the errors were compared with the errors of agro-climate models. The results showed that the relative errors of the predicted yield using MODIS-NDVI are between −4.62% and 5.40% and that whole RMSE was 214.16 kg ha−1 lower than the RMSE (233.35 kg ha−1) of agro-climate models in this study region. A good predicted yield data of winter wheat could be got about 40 days ahead of harvest time, i.e. at the booting-heading stage of winter wheat. The method suggested in this paper was good for predicting regional winter wheat production and yield estimation.  相似文献   

17.
选取关中平原2008-2016年的条件植被温度指数(vegetation temperature condition index,VTCI)遥感干旱监测结果,基于最优的干旱影响评估方法确定冬小麦各生育时期干旱对其单产的影响权重,构建县域尺度加权VTCI与小麦单产间的一元线性回归模型,并结合求和自回归移动平均模型(autoregressive integrated moving average,ARIMA)对各县(区)的冬小麦单产进行估测及向前一、二、三旬的预测。结果表明,基于改进的层次分析法与熵值法的最优组合赋权法对冬小麦各生育时期的权重确定较合理,以拔节期(0.489)最大,抽穗-灌浆期(0.427)次之,返青期(0.035)与乳熟期(0.049)较小;加权VTCI与小麦单产之间的相关性显著,单产估测精度较高;向前一、二、三旬的单产预测精度均较高,且以向前一旬的预测精度最高,有76.9%的相对误差小于2.0%,71.6%的均方根误差小于75.0 kg/hm2。  相似文献   

18.
This paper reports a study on multi-temporal polarized response of wheat crop from spaceborne ADEOS-POLDER sensor over a homogeneous wheat region of Punjab, India. Both the polarized as well as total reflectance of wheat were observed at different scattering angles for two spectral bands i.e. 670 nm and 865 nm during crop growth from November to April in rabi 1996-97 season. Results show that sun-target-viewing geometry plays an important role in polarization property. The top of atmosphere (TOA) polarized reflectance is found to decrease exponentially with increasing scattering angle. Polarized reflectance of crop was found to be an order of magnitude smaller in comparison to the total reflectance. An attempt was also made to model the observed polarized behavior over an agricultural area using a theoretical simplified crop reflectance model and accounting for atmospheric molecular (Rayleigh) contribution in the single scattering approximation. It was found that there was a decrease in the polarized reflectance at the grain filling (heading) stage of wheat crop. This is in accordance with ground- based observations and can be due to the reduction in the specular component of the reflected light during post-heading stage of the crop.  相似文献   

19.
地上生物量能够有效反映作物的生长状态,其信息的实时估算对产量预测和农田生产管理都有重要意义。作物生长模型因其详尽的生理生化基础和对生长过程数字化描述能力,成为生物量估算的理想模型。近年来,研究人员利用数据同化算法将时间序列遥感数据同化到作物生长模型中,实现了作物模型由基于气象站的点模拟到区域尺度面模拟的外推,使生物量模拟结果同时具备大范围和机理性两个方面的特点。这一模式下,时间序列的遥感数据质量将对生物量模拟精度产生直接影响,作物生长后期受到光谱饱和的影响,遥感数据的作物冠层信息获取能力会出现明显下降,因此有必要对该阶段遥感数据和作物模型的结合方式进行优化,提升生物量模拟精度。本文针对东北地区春玉米生物量遥感估算存在的问题,提出了利用WOFOST作物模型结合无人机(UAV)遥感数据实现作物生长后期生物量准确估算的新思路。新思路首先利用多光谱遥感数据获取WOFOST模型具备较高空间异质性的土壤速效养分参数以提升模型的空间信息模拟能力,使其能在一定程度上摆脱点尺度模拟的限制。同时,结合集合卡尔曼滤波算法将生长前期无人机(UAV)遥感数据同化到模型中,以缩短模型单独运行时间,减少模型运行过程中的参数误差累积,实现无遥感数据参与下的短期作物生长模拟,并输出生长后期相应的生物量模拟结果。最后,本文利用地面实测数据对新方法的生物量模拟精度进行了评价。结果表明,与全生育期数据同化相比,新方法的生物量估算精度有了明显的提升(全生育期同化:R2 = 0.45,RMSE = 4254.30 kg/ha;新方法:R2= 0.86,RMSE = 2216.79 kg/ha)。  相似文献   

20.
Timely and reliable estimation of regional crop yield is a vital component of food security assessment, especially in developing regions. The traditional crop forecasting methods need ample time and labor to collect and process field data to release official yield reports. Satellite remote sensing data is considered a cost-effective and accurate way of predicting crop yield at pixel-level. In this study, maximum Enhanced Vegetation Index (EVI) during the crop-growing season was integrated with Machine Learning Regression (MLR) models to estimate wheat and rice yields in Pakistan's Punjab province. Five MLR models were compared using a fivefold cross-validation method for their predictive accuracy. The study results revealed that the regression model based on the Gaussian process outperformed over other models. The best performing model attained coefficient of determination (R2), Root Mean Square Error (RMSE, t/ ha), and Mean Absolute Error (MAE, t/ha) of 0.75, 0.281, and 0.236 for wheat; 0.68, 0.112, and 0.091 for rice, respectively. The proposed method made it feasible to predict wheat and rice 6– 8 weeks before the harvest. The early prediction of crop yield and its spatial distribution in the region can help formulate efficient agricultural policies for sustainable social, environmental, and economic progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号