首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Lowe et al. (Estuaries and Coasts, 34:630–639, 2011) hypothesized that juvenile southern flounder Paralichthys lethostigma (Jordan and Gilbert 1884) would migrate from the Gulf of Mexico into the Mobile-Tensaw River Delta (AL, USA) and use low-salinity (oligohaline/freshwater) habitats during, at least, a portion of their first year of life. Thus, they analyzed the Sr/Ca ratio profiles along the sagittal otoliths of southern flounder collected in the Mobile-Tensaw River Delta and observed that one third of the flounders had low Sr/Ca levels in the otoliths’ core and throughout the otolith, suggesting that these fishes hatched in freshwater or low-salinity habitats where they spend the majority of their life. The other two thirds of southern flounder showed high levels of Sr/Ca ratio in the otoliths’ core following a marked decline of Sr/Ca ratio, which then maintained along the remainder of the otolith. This pattern was interpreted as larvae hatched in higher salinity waters before entering the Mobile-Tensaw River Delta; however, in this paper, I list several arguments to support an alternative interpretation for this pattern. I suggest that the high levels of Sr/Ca ratios in the otoliths’ core of southern flounder does not reflect the saline conditions where larvae hatched, instead it reflects the location where the female progenitor hydrated the eggs. Thus, adding my interpretation on the data of Lowe et al. (Estuaries and Coasts, 34:630–639, 2011), it seems that southern flounder might hatch in or near freshwater habitats and the migration of southern flounder into an estuarine ecosystem to spawn might exist.  相似文献   

13.
The wildland–urban interface (WUI) is defined in terms of housing density and proximity to wildlands, yet its relevance seems to be only in conjunction with wildland fire threats. The objective of this paper is to (1) identify the WUI areas threatened from wildfire during the 2000’s and (2) quantify the values that were threatened. We use 1 km fire detection data generated using MODIS satellite imagery over a 10-year period combined with population densities to identify threatened areas of the WUI. We then use data on structures, structure content, and population to identify the people and property threatened from identified fires within the WUI. We find that 6.3 % of the U.S. population (17.5 million) resided within these areas and that 2.1 % of the population lived in WUI areas where more than one fire has occurred. However, we find that only a third of the affected population was threatened during daytime hours, as most leave the threatened portion of the WUI during peak ignition hours. The threatened area comprised 4.1 % of the coterminous USA and 44.9 % of the WUI. Within these areas were 7.8 million residential, commercial, industrial, governmental, religious, and educational structures, with a building and building content value estimated at $1.9 trillion. Overall, 7.3 % of residential structures in the USA were found within the WUI with wildfire activity; however, for some states, this number was as high as 25.4 %.  相似文献   

14.
The comment by Day et al. (Contrib Mineral Petrol, 2012) (1) discusses the validity of the previously obtained oxygen isotope data for El Hierro and La Palma (Canary Island) olivines, (2) questions the approach by Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) of using weakly correlated variations of δ18Oolivine values with X px (proportion of pyroxenite-derived melt in the parental magma), and (3) provides reasons why oxygen isotope data by secondary ion mass spectrometry (SIMS) “offer sensitive means for detecting melt-crust interactions.” We respond these comments and report a new set of oxygen isotope measurements performed by SIMS and single-grain laser fluorination methods. These measurements confirm our previous data and conclusions and demonstrate the ability of the SIMS technique to analyze O isotopes in terrestrial samples with 2-sigma uncertainty better than ±0.25 ‰.  相似文献   

15.
16.
17.
18.
The comment of Stalder raises three main concerns regarding the interpretation of the experiments presented by Till et al. (2012): (1) our inability to uniquely distinguish between high-pressure hydrous silicate melt and solute-rich aqueous fluid leads to the incorrect interpretation of phase relations, (2) the temperature interval over which hydrous melting takes places is inordinately large and contrary to expectations, and/or (3) the possibility that the system may be above the second critical end point (SCEP) in this H2O-rich silicate system has been insufficiently discussed. In this reply, we provide clarification on these concerns and argue that with the extent of knowledge available today, the chemical characteristics of our experimental products at 3.2 and 4?GPa evince the presence of a silicate melt at temperatures <1,000?°C and we are below the SCEP in the peridotite–H2O system at the P–T conditions of our experiments. If in fact the quench observed in our experiments does represent that of a supercritical (SC) fluid, then our data suggest Mg and Fe are highly soluble in SC fluids at the P–T conditions of the base of the mantle wedge below arc volcanoes. Therefore, our results would require a significant change in thinking about the chemical compositional characteristics of SC fluids.  相似文献   

19.
The comment of Green et al. debates the interpretation of the temperature of the H2O-saturated peridotite solidus and presence of silicate melt in the experiments of Till et al. (Contrib Mineral Petrol 163:669–688, 2012) at <1,000?°C. The criticisms presented in their comment do not invalidate any of the most compelling observations of Till et al. (Contrib Mineral Petrol 163:669–688, 2012) as discussed in the following response, including the changing minor element and Mg# composition of the solid phases with increasing temperature in our experiments with 14.5?wt% H2O at 3.2?GPa, as well as the results of our chlorite peridotite melting experiments with 0.7?wt% H2O. The point remains that Till et al. (Contrib Mineral Petrol 163:669–688, 2012) present data that call into question the H2O-saturated peridotite solidus temperature preferred by Green (Tectonophysics 13(1–4):47–71, 1972; Earth Planet Sci Lett 19(1):37–53, 1973; Can Miner 14:255–268, 1976); Millhollen et al. (J Geol 82(5):575–587, 1974); Mengel and Green (Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions, Geological Society of Australia Special Publication, Blackwell, pp 571-581, 1989); Wallace and Green (Mineral Petrol 44:1–19, 1991) and Green et al. (Nature 467(7314):448–451, 2010).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号