首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range.It contains the Yunmengshan batholith,which is dominated by two plutons:the Yunmengshan gneissic granite and the Shicheng gneissic diorite.Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma,whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma.Dikes that cut the Yunmengshan diorite record SHRIMP zircon UPb age of 162±2 and 156±4 Ma.The cumulative pl...  相似文献   

2.
The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyroclastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of siliciclastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre-Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.  相似文献   

3.
During the Late Cretaceous in the Eastern Mediterranean, the northern branch of the southern Neotethys was closed by multiple northward subductions. Of these, the most northerly located subduction created the Baskil continental arc at around 82–84 Ma. The more southerly and intra-oceanic subduction, on the other hand, produced an arc-basin system,the Yüksekova Complex, as early as the late Cenomanian–early Turonian. The abundant and relatively well-studied basaltic rocks of this complex were intruded by dykes, sills and small stocks of felsic–intermediate rocks, not previously studied in detail. The intrusives collected from five different localities in the Elaz?? region of eastern Turkey are all subalkaline, with low Nb/Y values. Most of them have been chemically classified as rhyodacites/dacites, whereas a small number appear to be andesites. In normal mid-ocean-ridge basalt(N-MORB)-normalised plots, the intrusives are characterised by relative enrichments in Th and La over Nb, Zr, Hf, Ti and high field strength elements(HREEs), indicating their derivation from a subduction-modified source. While their relatively high, positive εN d(i) values(+6.4 and +7.2) might suggest a depleted mantle source for their ultimate origin, somewhat radiogenic Pb values indicate a sedimentary contribution to the source of the rocks. The overall geochemical characteristics indicate their generation in an oceanic arc setting. The zircon U-Pb Laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) data obtained from five felsic-intermediate rock samples yielded intrusion dates of 80–88 Ma. This suggests that the Elaz?? oceanic arc-related intrusives are slightly younger than those of the Yüksekova arc-basin system, but coeval with the Baskil continental arc. However, the felsic–intermediate intrusives show different geochemical characteristics(oceanic arc-type, with a lack of crustal contamination)to those of the Baskil continental arc. This indicates that these two igneous systems are unrelated and likely developed in different tectonic settings. This, in turn, supports a geodynamic model in which the northern strand of the southern Neotethys was consumed by multiple northward subductions.  相似文献   

4.
西藏中拉萨地块东段大规模侏罗纪-白垩纪花岗岩类的成因类型及构造背景尚未得到有效约束,该时期岩浆作用的时空分布、岩石成因以及深部动力学机制等问题亟需新的深入研究。本文对中拉萨地块东段南缘那茶淌地区的花岗岩类进行了系统的岩相学、元素地球化学、年代学和锆石Hf同位素研究。LA-MC-ICPMS锆石U-Pb定年结果显示,那茶淌地区黑云母二长花岗岩成岩年龄为147±1.4Ma,花岗闪长岩年龄为140.6±1.3Ma,系晚侏罗世-早白垩世中酸性岩浆活动的产物。在元素地球化学组成上,黑云母二长花岗岩和花岗闪长岩的主量元素组成具有富SiO2(分别为71.02%~71.81%和65.17%~66.73%)、Al2O3(分别为13.45%~13.57%和14.43%~15.20%)、碱金属(Na2O+K2O)(分别为6.79%~7.48%和6.55%~7.37%),贫TiO2(分别为0.15%~0.21%和0.10%~0.13%)等特征,显示I型准铝-弱过铝质(A/CNK=0...  相似文献   

5.
6.
The Jiangla'angzong granite in the northern part of the Central Lhasa Terrane is composed of syenogranite and adamellite. LA-ICP-MS zircon U-Pb analyses suggest that syenogranite has a weighted mean ~(206) Pb/~(238) U age of 86±1 Ma(mean square weighted deviation=0.37), which is in accordance with the muscovite Ar-Ar age(85±1 Ma) of Cu-Au ore-bearing skarns and the zircon U-Pb age(84±1 Ma) of adamellite. This suggests that the Jiangla'angzong magmatism and Cu–Au mineralization events took place during the Late Cretaceous. The granite contains hornblende, biotite, and pyroxene, and does not contain Al-bearing minerals, such as muscovite, cordierite, and garnet. It has high contents of SiO_2(65.10–70.91 wt%), K_2O(3.44–5.17 wt%), and total K_2O+Na_2O(7.13–8.15 wt%), and moderate contents of A_(12)O_3(14.14–16.45 wt%) and CaO(2.33–4.11 wt%), with a Reitman index(σ43) of 2.18 to 2.33, and A/CNK values of 0.88 to 1.02. The P_2O_5 contents show a negative correlation with SiO_2, whereas Pb contents show a positive correlation with SiO_2. Th and Y contents are relatively low and show a negative correlation with the Rb contents. These characteristics suggest that the Jiangla'angzong granite is a high K calc–alkaline metaluminous I–type granite. It is enriched in light rare earth elements(LREE) and large ion lithofile elements(LILE), and depleted in heavy rare earth elements(HREE) and high field strength elements(HFSE), with LREE/HREE ratios of 11.7 to 18.1. The granite has negative Eu anomalies of 0.58 to 0.94 without obvious Ce anomalies(δCe=1.00–1.04). The relatively low initial 87 Sr/86 Sr ratios of 0.7106 to 0.7179, positive εHf(t) values of 1.0 to 4.1, and two-stage Hf model ages(TDM2) ranging from 889 Ma to 1082 Ma, These geochemical features indicate that the granite derived from a juvenile crust. The(~(143) Nd/~(144) Nd)_t values from the Jiangla'angzong granite range from 0.5121 to 0.5123, its εNd(t) values range from-10.17 to-6.10, its(~(206) Pb/~(204) Pb)_t values range from 18.683 to 18.746, its(~(207) Pb/~(204) Pb)_t values range from 15.695 to 15.700, and its(~(208) Pb/~(204) Pb)_t values range from 39.012 to 39.071. These data indicate that the granite was formed by melting of the upper crust with the addition of some mantle materials. We propose that the Jiangla'angzong granite was formed during the postcollision extension of the Qiangtang and Lhasa terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号