首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

2.
The Helanshan tectonic belt is located to the west of the Ordos Basin, and separates the Alxa (or Yinshan) Massif to the west from the Ordos block to the east. Triassic sedimentation in the Helanshan tectonic belt records important information about tectono-sedimentary process between the Alxa Massif and the Ordos block. Detailed geological mapping and investigation on the lithological package, sedimentary facies and paleocurrent orientation have been conducted on the Middle to Upper Triassic clastic rocks in the Helanshan tectonic belt. The succession is characterized by upward-fining sequence and comprises coarse grained alluvial-fluvial facies in the lower part as well as deltaic-lacustrine facies in the upper part. Based on detailed study and comparisons on the sedimentary sequence along various sections, the Middle to Upper Triassic strata have been revealed that show clear southeastward-deepening sedimentary differentiation and transgression from southwest to northeast, which are consistent with the southeastward flowing paleocurrent. These features indicate a southeastward-dipping paleogeography in the Helanshan tectonic belt, which was original western part of southeastward orientated fluvial-lacustrine system in the northwestern proto-Ordos Basin. Further to the east, the Triassic succession in the Ordos Basin displays gradually thickening and alluvial-fluvial system flowed from southeast to northwest, showing a huge thick sedimentary wedge in the western basin margin. Together with the Late Permian–Early Triassic closure of the Paleo-Asian Ocean to the north, the Late Triassic extensional structures and diabase dykes in the Helanshan tectonic belt, all the above sedimentary features could be mostly interpreted as records of an extensional basin correlated to post-collisional collapse of the Central Asian Orogenic Belt.  相似文献   

3.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.  相似文献   

4.
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions.  相似文献   

5.
The Middle–Late Jurassic transition period is a critical period for the evolution of terrestrial vertebrates, but the global fossil record from this time is relatively poor. The Shishugou Fauna of this period has recently produced significant fossil remains of dinosaurs and other vertebrate groups, some representing the earliest known members of several dinosaurian groups and other vertebrate groups and some representing the best-known specimens of their group. These discoveries are significant for our understanding of the origin and evolution of several vertebrate lineages. Radiometric dating indicates that the fauna is aged approximately 159–164 Ma. Comparisons with other similarly-aged terrestrial faunas such as Shaximiao and Yanliao show both taxonomic similarities and differences between these faunas and indicate that the Junggar deposits might have preserved the most complete vertebrate fossil record for a Middle–Late Jurassic Laurasian terrestrial fauna.  相似文献   

6.
The early stage of Sichuan Basin formation was controlled by the convergence of three major Chinese continental blocks during the Indosinian orogeny that include South China,North China,and Qiangtang blocks.Although the Late Triassic Xujiahe Formation is assumed to represent the commencement of continental deposition in the Sichuan Basin,little research is available on the details of this particular stratum.Sequence stratigraphic analysis reveals that the Xujiahe Formation comprises four third-order depositional sequences.Moreover,two tectono-sedimentary evolution stages,deposition and denudation,have been identified.Typical wedge-shaped geometry revealed in a cross section of the southern Sichuan Basin normal to the Longmen Shan fold-thrust belt is displayed for the entire Xujiahe Formation.The depositional extent did not cover the Luzhou paleohigh during the LST1 to LST2 (LST,TST and HST mean Iowstand,transgressive and highstand systems tracts,1,2,3 and 4 represent depositional sequence 1,2,3 and 4),deltaic and fluvial systems fed sediments from the Longmen Shan belt,Luzhou paleohigh,Hannan dome,and Daba Shan paleohigh into a foreland basin with a centrally located lake.The forebulge of the western Sichuan foreland basin was located southeast of the Luzhou paleohigh after LST2.According to the principle of nonmarine sequence stratigraphy and the lithology of the Xujiahe Formation,four thrusting events in the Longmen Shan fold-thrust belt were distinguished,corresponding to the basal boundaries of sequences 1,2,3,and 4.The northern Sichuan Basin was tilted after the deposition of sequence 3,inducing intensive erosion of sequences 3 and 4,and formation of wedge-shaped deposition geometry in sequence 4 from south to north.The tilting probably resulted from small-scale subduction and exhumation of the western South China block during the South and North China block collision.  相似文献   

7.
8.
Sedimentary successions provide direct evidence of climate and tectonics, and these give clues about the causes of the mass extinction around the Permian–Triassic boundary. Terrestrial Permian–Triassic boundary strata in the eastern Ordos Basin, North China, include the Late Permian Sunjiagou, Early Triassic Liujiagou and late Early Triassic Heshanggou formations in ascending order. The Sunjiagou Formation comprises cross-bedded sandstones overlaid by mudstones, indicating meandering rivers with channel, point bar and floodplain deposits. The Liujiagou Formation was formed in braided rivers of arid sand bars interacting with some aeolian dune deposits, distinguished by abundant sandstones where diverse trough and planar cross-bedding and aeolian structures (for example, inverse climbing-ripple, translatent-ripple lamination, grainfall and grainflow laminations) interchange vertically and laterally. The Heshanggou Formation is a rhythmic succession of mudstones interbedded with thin medium-grained sandstones mainly deposited in a shallow lacustrine environment. Overall, the sharp meandering to braided to shallow lake sedimentary transition documents palaeoenvironmental changes from semi-arid to arid and then to semi-humid conditions across the Permian–Triassic boundary. The die-off of tetrapods and plants, decreased bioturbation levels in the uppermost Sunjiagou Formation, and the bloom of microbially-induced sedimentary structures in the Liujiagou Formation marks the mass extinction around the Permian–Triassic boundary. The disappearance of microbially-induced sedimentary structures, increasingly intense bioturbation from bottom to top and the reoccurrence of reptile footprints in the Heshanggou Formation reveal gradual recovery of the ecosystem after the Permian–Triassic boundary extinction. This study is the first to identify the intensification of aeolian activity following the end-Permian mass extinction in North China. Moreover, while northern North China continued to be uplifted tectonically from the Late Palaeozoic to Late Mesozoic, the switch of sedimentary patterns across the Permian–Triassic boundary in Shanxi is largely linked to the development of an arid and subsequently semi-humid climate condition, which probably directly affected the collapse and delayed recovery in palaeoecosystems.  相似文献   

9.
正Objective It is still controversial about when,where and how the East Paleotethys Ocean closed due to the lack of reliable paleomagnetic data from the blocks or terranes located in both sides of the suture,which prohibits our better understanding of a series of key scientific issues such as how major blocks of East Asia collided together,and the  相似文献   

10.
The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic–Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian–Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian–Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.  相似文献   

11.
U–Pb detrital zircon geochronology has been used to identify provenance and document sediment delivery systems during the deposition of the early Late Triassic Yanchang Formation in the south Ordos Basin. Two outcrop samples of the Yanchang Formation were collected from the southern and southwestern basin margin respectively. U–Pb detrital zircon geochronology of 158 single grains (out of 258 analyzed grains) shows that there are six distinct age populations, 250–300 Ma, 320–380 Ma, 380–420 Ma, 420–500 Ma, 1.7–2.1 Ga, and 2.3–2.6 Ga. The majority of grains with the two oldest age populations are interpreted as recycled from previous sediments. Multiple sources match the Paleozoic age populations of 380–420 and 420–500 Ma, including the Qilian–Qaidam terranes and the North Qilian orogenic belt to the west, and the Qinling orogenic belt to the south. However, the fact that both samples do not have the Neoproterozoic age populations, which are ubiquitous in these above source areas, suggests that the Late Triassic Yanchang Formation in the south Ordos Basin was not derived from the Qilian–Qaidam terranes, the North Qilian orogenic belt, and the Qinling orogenic belt. Very similar age distribution between the Proterozoic to Paleozoic sedimentary rocks and the early Late Triassic Yanchang Formation in the south Ordos Basin suggests that it was most likely recycled from previous sedimentary rocks from the North China block instead of sediments directly from two basin marginal deformation belts.  相似文献   

12.
Nitrogen isotopic compositions of upper Permian to lowermost Triassic rocks were analyzed at Chaotian in northern Sichuan, South China, in order to clarify changes in the oceanic nitrogen cycle around the Permian–Triassic boundary (P–TB) including the entire Changhsingian (Late Late Permian) prior to the extinction. The analyzed ca. 40 m thick interval across the P–TB at Chaotian consists of three stratigraphic units: the upper Wujiaping Formation, the Dalong Formation, and the lowermost Feixianguan Formation, in ascending order. The upper Wujiaping Formation, ca. 10 m thick, is mainly composed of dark gray limestone with diverse shallow-marine fossils such as calcareous algae and brachiopods, deposited on the shallow shelf. In contrast, the overlying Dalong Formation, ca. 25 m thick, is mainly composed of thinly bedded black mudstone and siliceous mudstone containing abundant radiolarians, deposited on the relatively deep slope/basin. Absence of bioturbation, substantially high total organic carbon contents (up to 15%), and abundant occurrence of pyrite framboids in the main part of the Dalong Formation indicate deposition under anoxic condition. The lowermost Feixianguan Formation, ca. 5 m thick, is composed of thinly bedded gray marl and micritic limestone with minor fossils such as ammonoids and conodonts, deposited on the relatively shallow slope. δ15NTN values are in positive values around +1 to +2‰ in the upper Wujiaping Formation implying denitrification and/or anammox in the ocean. δ15NTN values gradually decrease to −1‰ in the lower Dalong Formation and are consistently low (around 0‰) in the middle Dalong to lowermost Feixianguan Formation. No clear δ15NTN shift is recognized across the extinction horizon. The consistently low δ15NTN values suggest the enhanced nitrogen fixation in the ocean during the Changhsingian at Chaotian. Composite profiles based on previous and the present studies demonstrate the substantial δ15N variation on a global scale in the late Permian to earliest Triassic; a systematic δ15N difference by low and high latitudes is particularly clarified. Although the enhanced nitrogen fixation throughout the Changhsingian at Chaotian was likely a regional event in northwestern South China, the composite δ15N profiles imply that the sea area in which fixed nitrogen is depleted has gradually developed worldwide in the Changhsingian, possibly acting as a prolonged stress to shallow-marine biota.  相似文献   

13.
DynamicalProcesandGenesisofLateTriasicSedimentFilinginOrdosBasin*JiaoYangquanLuZongshengZhuangXinguoYangShigongFacultyofEarth...  相似文献   

14.
The West Qinling Orogen (WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits (>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic (T3–J1) and one only recently identified in the Late Jurassic to Early Cretaceous (J3–K1). Few studies have focused on the origin and geotectonic setting of the J3–K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3–K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3–K1 hydrothermal gold systems. Pyrite in breccia- and dyke-hosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3–K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni- and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO (East Qinling Orogen), J3–K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE- and EW-trending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3–K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior.  相似文献   

15.
New conodont samples have been systematically collected at high stratigraphic resolution from the upper part of the Longtan Formation through to the lower part of the Yelang Formation at the Zhongzhai section, southwestern Guizhou Province, South China, in an effort to verify the first local occurrence of Hindeodus parvus in relation to the Permian–Triassic boundary at this section. The resampled conodont fauna from the Permian–Triassic boundary interval comprises five identified species and two undetermined species in Hindeodus and Clarkina. Most importantly, the first local occurrence of Hindeodus parvus is found for the first time from the bottom of Bed 28a, 18 cm lower than the previously reported first local occurrence of this species at this section. Considering the previously accepted PTB at the Zhongzhai section, well calibrated by conodont biostratigraphy, geochronology and carbon isotope chemostratigraphy, this lower (earlier) occurrence of H. parvus suggests that this critical species could occur below the Permian–Triassic boundary. As such, this paper provides evidence that (1) the first local occurrences of H. parvus are diachronous in different sections with respect to the PTB defined by the First Appearance Datum (FAD) of this species at its GSSP section in Meishan, China and that (2) the lower stratigraphic range of H. parvus should now be extended to latest Permian.  相似文献   

16.
A new scheme of Late Triassic palaeophytogeographic regionalization of China is put forward on the basis of three principles given as follows:1. The palaeophytogeographic regionalization should be based on the characters of the various floras themselves. These characters include the types of the dominant floras, compositional patterns of various communities and existence of dominant genera or those genera and species characteristic of a region.2. The palaeogeographic positions of the floras in geologic time should be considered.3. The distribution of the floras was influenced in three directions——latitudinal, longitudinal and vertical——in geological time.Formerly, a number of Chinese palaeobotanists based the palaeophytogeographic regionalization only on the factor of latitude, and neglected the characters of the floras themselves and the effect of their three-directional zonation. However the discovery of the Tianqiaoling flora(located at latitude 43.5°N in NE China) rich in fossils of Dipteridaceae and Cycadophyta, indicating tropic or subtropic conditions, and a comprehensive consideration of assigning the floras of southern Tibet on the basis of palaeomagnetism, plate tectonics, etc., suggest that the palaeophytogeographic regionalization is a rather complicated subject. As the climatic conditions controlling the growth of vegetation changed in three directions one should consider not only the effect of latitudinal change(which usually causes temperature variations from south to north), but also the effect of longitudinal change(which usually brings about variations in humidity from sea to inland) and moreover the effect of vertical or elevation change(which also leads to variations in temperature and humidity). At the same time, it is also necessary to take into consideration the actual palaeogeographic positions of the floras in geologic time.Therefore, it is suggested that the Late Triassic floras in China should be grouped into three floristic regions, namely.(1) the Northern Floristic Region with the Danaeopsis-Symopteris flora,(2) the Southern Floristic Region with the Dictyophyllum-Clathropteris flora, and(3) the Yaflung Zangbo River Floristic Region. It is inferred here that the floral characters of the 3rd region are similar to those of the Dicroidium-Lepidopleris flora growing on Gondwana land at that time.  相似文献   

17.
The demarcation of the Lower–Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower–Middle Triassic strata of different types, from platform to basin facies, are well developed in Southwest China. This is favorable for the study of the Olenekian–Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3, Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N. triangularis Assemblage-Zone; 5, Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early–Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N. triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower–Middle Triassic boundary. The Lower–Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section, whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower–Middle Triassic boundary in South China. Based on the analysis of high-precision and high-sensitivity Secondary Ion Mass Spectrum data, the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9Ma (2s), which is a directly measured zircon U-Pb age of the Lower–Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower–Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower–Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower–Middle Triassic boundary.  相似文献   

18.
Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian–Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian–Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8–10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian–Triassic boundary.  相似文献   

19.
Geotectonics - Vendian and Permian–Triassic plagiogranite magmatism is distinguished for the Ust-Belsky and Algansky terranes of West Koryak fold system. The U‒Pb zircon ages from...  相似文献   

20.
Late Mesozoic Intracontinental Rifting and Basin Formation in Eastern China   总被引:1,自引:0,他引:1  
LateMesozoicIntracontinentalRiftingandBasinFormationinEasternChina*RenJianyeLiSitianFacultyofEarthResources,ChinaUniversityof...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号