首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.  相似文献   

2.
This paper studies the effects of mitigation and adaptation on coastal flood impacts. We focus on a scenario that stabilizes concentrations at 450 ppm-CO2-eq leading to 42 cm of global mean sea-level rise in 1995–2100 (GMSLR) and an unmitigated one leading to 63 cm of GMSLR. We also consider sensitivity scenarios reflecting increased tropical cyclone activity and a GMSLR of 126 cm. The only adaptation considered is upgrading and maintaining dikes. Under the unmitigated scenario and without adaptation, the number of people flooded reaches 168 million per year in 2100. Mitigation reduces this number by factor 1.4, adaptation by factor 461 and both options together by factor 540. The global annual flood cost (including dike upgrade cost, maintenance cost and residual damage cost) reaches US$ 210 billion per year in 2100 under the unmitigated scenario without adaptation. Mitigation reduces this number by factor 1.3, adaptation by factor 5.2 and both options together by factor 7.8. When assuming adaptation, the global annual flood cost relative to GDP falls throughout the century from about 0.06 % to 0.01–0.03 % under all scenarios including the sensitivity ones. From this perspective, adaptation to coastal flood impacts is meaningful to be widely applied irrespective of the level of mitigation. From the perspective of a some less-wealthy and small island countries, however, annual flood cost can amount to several percent of national GDP and mitigation can lower these costs significantly. We conclude that adaptation and mitigation are complimentary policies in coastal areas.  相似文献   

3.
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  相似文献   

4.
Studies of global environmental change make extensive use of scenarios to explore how the future can evolve under a consistent set of assumptions. The recently developed Shared Socioeconomic Pathways (SSPs) create a framework for the study of climate-related scenario outcomes. Their five narratives span a wide range of worlds that vary in their challenges for climate change mitigation and adaptation. Here we provide background on the quantification that has been selected to serve as the reference, or ‘marker’, implementation for SSP2. The SSP2 narrative describes a middle-of-the-road development in the mitigation and adaptation challenges space. We explain how the narrative has been translated into quantitative assumptions in the IIASA Integrated Assessment Modelling Framework. We show that our SSP2 marker implementation occupies a central position for key metrics along the mitigation and adaptation challenge dimensions. For many dimensions the SSP2 marker implementation also reflects an extension of the historical experience, particularly in terms of carbon and energy intensity improvements in its baseline. This leads to a steady emissions increase over the 21st century, with projected end-of-century warming nearing 4 °C relative to preindustrial levels. On the other hand, SSP2 also shows that global-mean temperature increase can be limited to below 2 °C, pending stringent climate policies throughout the world. The added value of the SSP2 marker implementation for the wider scientific community is that it can serve as a starting point to further explore integrated solutions for achieving multiple societal objectives in light of the climate adaptation and mitigation challenges that society could face over the 21st century.  相似文献   

5.
新疆未来暖湿化的预估分析可为区域气候变化减缓和适应提供重要的科学基础。国际耦合模式比较计划第六阶段(CMIP6)全球气候模式在三种共享社会经济路径(SSPs)下的结果显示,新疆地区未来2021~2100年总体呈现气温升高、降水增加的“暖湿化”现象,但这种变化的具体数值和空间分布存在一定差异。其中SSP2-4.5情景下,相对于1995~2014年,预估2021~2040年新疆地区年平均气温将升高1.2℃左右,年平均降水将增加6.8%。对极端事件的预估结果表明,新疆地区未来暖事件将增加,冷事件将减少;极端强降水事件将增多,且高排放情景下的增加更为显著。新疆地区的未来预估分析,将有助于对新疆地区灾害风险时空变化格局的认识,对未来农业方面等风险防范也有重要的指示作用。  相似文献   

6.
构建了具有7个国家集团的全球多国家集团气候博弈集成评估模拟系统,针对《巴黎协定》背景下各国至2050年以及2100年的减排目标,分别对减排博弈的纳什均衡、博弈不确定性以及外部政策对减排博弈的影响展开了模拟分析。研究发现:在基准情景下,全球各国将在2030年后均选择不减排策略,全球至2100年升温达到2.62℃;而模型参数的不确定性也未能突破全球零减排的纳什均衡;而仅当在全球范围内对不减排采取惩罚措施时,全球零减排的纳什均衡点被打破。但在当前《巴黎协定》减排承诺下,为达到2℃的温控目标,加大2030—2050年的减排幅度至关重要,否则全球将在2040年左右突破2℃阈值。  相似文献   

7.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

8.
The climate change research community’s shared socioeconomic pathways (SSPs) are a set of alternative global development scenarios focused on mitigation of and adaptation to climate change. To use these scenarios as a global context that is relevant for policy guidance at regional and national levels, they have to be connected to an exploration of drivers and challenges informed by regional expertise.In this paper, we present scenarios for West Africa developed by regional stakeholders and quantified using two global economic models, GLOBIOM and IMPACT, in interaction with stakeholder-generated narratives and scenario trends and SSP assumptions. We present this process as an example of linking comparable scenarios across levels to increase coherence with global contexts, while presenting insights about the future of agriculture and food security under a range of future drivers including climate change.In these scenarios, strong economic development increases food security and agricultural development. The latter increases crop and livestock productivity leading to an expansion of agricultural area within the region while reducing the land expansion burden elsewhere. In the context of a global economy, West Africa remains a large consumer and producer of a selection of commodities. However, the growth in population coupled with rising incomes leads to increases in the region’s imports. For West Africa, climate change is projected to have negative effects on both crop yields and grassland productivity, and a lack of investment may exacerbate these effects. Linking multi-stakeholder regional scenarios to the global SSPs ensures scenarios that are regionally appropriate and useful for policy development as evidenced in the case study, while allowing for a critical link to global contexts.  相似文献   

9.
Urbanization and climate change are among the most important global trends affecting human well-being during the twenty-first century. One region expected to undergo enormous urbanization and be significantly affected by climate change is Africa. Studies already find increases in temperature and high temperature events for the region. How many people will be exposed to heat events in the future remains unclear. This paper attempts to provide a first estimate of the number of African urban residents exposed to very warm 15-day heat events (>42 °C). Using the Shared Socio-economic Pathways and Representative Concentration Pathways framework we estimate the numbers of exposed, sensitive (those younger than 5 and older than 64 years), and those in low-income nations, with gross national products of $4000 ($2005, purchasing power parity), from 2010 to 2100. We examine heat events both with and without urban heat island estimates. Our results suggest that at the low end of the range, under pathways defined as sustainable (SSP 1) and low relative levels of climate change (RCP 2.6) without including the urban heat island effect there will be large populations (>300 million) exposed to very warm heat wave by 2100. Alternatively, by 2100, the high end exposure level is approximately 2.0 billion for SSP 4 under RCP 4.5 where the urban heat island effect is included.  相似文献   

10.
Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ± 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0–4.9 % net increase in mean global annual rainbow-days (i.e., days with at least one rainbow), with the greatest change under the highest emission scenario. Around 21–34 % of land areas will lose rainbow-days and 66–79 % will gain rainbow-days, with rainbow gain hotspots mainly in high-latitude and high-elevation regions with smaller human populations. Our research demonstrates that alterations to non-tangible environmental attributes due to climate change could be significant and are worthy of consideration and mitigation.  相似文献   

11.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   

12.
While scenarios are used extensively for communication about climate change mitigation, little is known about the interpretation of these scenarios by citizens. We conducted a cross-country empirical evaluation of scenario visualizations for global mitigation, using online surveys in Germany (N = 379), Poland (N = 223), and France (N = 225). Each respondent received visualizations of the required changes in global carbon dioxide emissions and composition of electricity supply (fossil fuels, nuclear, and renewable sources) for limiting global warming to 1.5 °C. We evaluated the effects of respondents’ demographics, prior beliefs, numeracy, and graph literacy on the reading accuracy and knowledge gains from the visualizations. We also included an experimental between-groups design on visualization format, where four groups received different graph formats (steep or gradual graphs with depictions of uncertainty ranges or scenario ensembles) and the fifth group received a table. Results showed that higher education level, numeracy, and graph literacy increased reading accuracy in all countries, while age reduced them. Respondents with prior beliefs about climate change mitigation that matched the information in the visualizations had also higher reading accuracy and knowledge gains. While the effects of different visualization formats were comparatively minor, customizing formats according to demographic and country differences was used to reduce adverse effects from these differences. These results emphasize the need to design visualizations that match characteristics of the intended audience and could inform better communication of climate change mitigation scenarios to non-expert audience.  相似文献   

13.
Policy makers and citizens must choose from among a growing variety of strategic options as they try to cope optimally with climate change. As a means of more accurately predicting different types of climate change engagement, we empirically distinguish individuals’ felt responsibility for mitigation (FRm) from felt responsibility for adaptation (FRa), and assess support for different climate action strategies (mitigation and adaptation). We surveyed two U.S. samples two months apart, and the replication study confirmed Study 1′s findings of differing predictive powers for FRm vs. FRa. Each type of felt responsibility, controlling for the other, served as a mediator between belief in global warming (as well as belief in anthropogenic cause of climate change) and its corresponding climate action strategy (mitigation vs. adaptation). FRa predicted adaptation measures but not mitigation measures, while FRm predicted mitigation measures more strongly than it predicted adaptation but did predict both action strategies. We also found important individual differences: people’s disposition toward behaving proactively correlated positively with all types of climate engagement, and political orientation (liberal/conservative ideology) interacted with climate action strategy (mitigation vs. adaptation) in predicting all engagement variables. Comparing levels of support across the political spectrum, the mitigation measures were highly polarizing, while the adaptation measures were less divisive.  相似文献   

14.
Most deciduous fruit trees need sufficient accumulated chilling, or vernalisation, to break winter dormancy. Inadequate chilling due to enhanced greenhouse warming may result in prolonged dormancy, leading to reduced fruit quality and yield. The potential impact of warming on chill accumulation has been analysed using the Utah vernalisation model and temperature data from over 400 climate stations in southern Australia. Two experiments were performed: (i) a sensitivity study where temperatures were increased at all sites by either 1, 2 or 3 °C; (ii) a scenario study for the year 2030 where temperatures were increased according to spatially- and seasonally-varying warming scenarios derived from five global climate models under enhanced greenhouse conditions.The sensitivity study shows that warming causes greater reduction in chilling at sites with a higher present mean temperature and/or a wider diurnal temperature range. In the scenario study, two warming scenarios for the year 2030 were considered: a low (high) warming scenario which assumes a low (high) rate of increase of greenhouse gas emission, a low (high) global climate sensitivity to increased emissions, and a low (high) regional temperature response. The low warming scenario is less than 1 °C in southern Australia and is unlikely to affect the vernalisation of high-chill fruit, except for pome-fruit grown in south-west Western Australia. The high warming scenario exceeds 1.5 °C and would significantly increase the risk of prolonged dormancy for both stone-fruit and pome-fruit at many sites.  相似文献   

15.
Two central issues of climate change have become increasingly evident: Climate change will significantly affect cities; and rapid global urbanization will increase dramatically the number of individuals, amount of critical infrastructure, and means of economic production that are exposed and vulnerable to dynamic climate risks. Simultaneously, cities in many settings have begun to emerge as early adopters of climate change action strategies including greenhouse gas mitigation and adaptation. The objective of this paper is to examine and analyze how officials of one city – the City of New York – have integrated a flexible adaptation pathways approach into the municipality's climate action strategy. This approach has been connected with the City's ongoing response to Hurricane Sandy, which struck in the October 2012 and resulted in damages worth more than US$19 billion. A case study narrative methodology utilizing the Wise et al. conceptual framework (see this volume) is used to evaluate the effectiveness of the flexible adaptation pathways approach in New York City. The paper finds that Hurricane Sandy serves as a “tipping point” leading to transformative adaptation due to the explicit inclusion of increasing climate change risks in the rebuilding effort. The potential for transferability of the approach to cities varying in size and development stage is discussed, with elements useful across cities including the overall concept of flexible adaptation pathways, the inclusion of the full metropolitan region in the planning process, and the co-generation of climate-risk information by stakeholders and scientists.  相似文献   

16.
两种不同减排情景下21世纪气候变化的数值模拟   总被引:3,自引:1,他引:3  
利用国家气候中心最新发展的气候系统模式BCC-CSM1.0模拟了相对于B1排放情景,两种不同减排情景(De90和De07,表示按照B1情景排放到2012年,之后线性递减,至2050年时CO_2排放水平分别达到1990和2007年排放水平一半的情景)对全球和中国区域气候变化的影响.结果表明:两种减排情景下模式模拟的全球平均地表气温在21世纪40年代以后明显低于Bl情景,比减排情景浓度低于B1的时间延迟了20年左右;尽管De90减排情景在2050年所达到的稳定排放水平低于De07情景,但De90情景下的全球增温在2070年以后才一致低于De07情景,这种滞后町能与耦合系统(主要足海洋)的惯性有关;至21世纪末,De90和De07情景下的全球增温幅度分别比B1情景降低了0.4和0.2℃;从全球分布来看,B1情景下21世纪后30年的增温幅度在北半球高纬度和极地地区最大,减排情景能够显著减少这些地区的增温幅度,减排程度越大,则减少越多;在中国区域,B1情景下21世纪末平均增温比全球平均高约1.2℃,减排情景De90和De07分别比B1情景降低了0.4和0.3℃,中国北方地区增温幅度高于南方及沿海地区,减排情景能够显著减小中国西部地区的增温幅度;B1情景下21世纪后30年伞球增温在冬季最高,De90和De07情景分别能够降低各个季节全球升温幅度的17%和10%左右.  相似文献   

17.
This study quantifies the Shared Socioeconomic Pathways (SSPs) using AIM/CGE (Asia-Pacific Integrated Assessment/Computable General Equilibrium). SSP3 (regional rivalry) forms the main focus of the study, which is supposed to face high challenges both in mitigation and adaptation. The AIM model has been selected as the model to quantify the SSP3 marker scenario, a representative case illustrating a particular narrative. Multiple parameter assumptions in AIM/CGE were differentiated across the SSPs for quantification. We confirm that SSP3 quantitative scenarios outcomes are consistent with its narrative. Moreover, four key features of SSP3 are observed. First, as SSP3 was originally designed to contain a high level of challenges to mitigation, mitigation costs in SSP3 were relatively high. This results from the combination of high greenhouse gas emissions in the baseline (no climate mitigation policy) scenario and low mitigative capacity. Second, the climate forcing level in 2100 for the baseline scenarios of SSP3 was similar to that of SSP2, whereas CO2 emissions in SSP3 are higher than those in SSP2. This is mainly due to high aerosol emissions in SSP3. A third feature was the high air pollutant emissions associated with weak implementation of air quality legislation and a high level of coal dependency. Fourth, forest area steadily decreases with a large expansion of cropland and pasture land. These characteristics indicate at least four potential uses for SSP3. First, SSP3 is useful for both IAM and impact, adaptation, vulnerability (IAV) analyses to present the worst-case scenario. Second, by comparing SSP2 and SSP3, IAV analyses can clarify the influences of socioeconomic elements under similar climatic conditions. Third, the high air pollutant emissions would be of interest to atmospheric chemistry climate modelers. Finally, in addition to climate change studies, many other environmental studies could benefit from the meaningful insights available from the large-scale land use change resulting in SSP3.  相似文献   

18.
IPCC于2022年4月正式发布了第六次评估报告(AR6)第三工作组(WGⅢ)报告《气候变化2022:减缓气候变化》,该报告以已发布的第一和第二工作组报告作为基础,评估了各领域减缓气候变化的进展。报告的第九章建筑章节系统全面地评估了全球建筑领域的温室气体排放现状、趋势和驱动因素,综述并评估了建筑减缓气候变化的措施、潜力、成本和政策。报告主要结论认为,全球建筑领域有可能在2050年实现温室气体净零排放,但如果政策措施执行不力,将有可能在建筑领域形成长达几十年的高碳锁定效应。报告的主要结论将成为全球建筑领域应对气候变化行动的重要参考,对于我国建筑领域实现碳达峰、碳中和目标也有非常重要的借鉴意义。  相似文献   

19.
China’s influence on climate governance has been steadily increasing since the adoption of the Paris Agreement on climate change in 2015. Much of this influence, this article argues, has come from China forging a path for climate adaptation and mitigation for the global South. This is having far-reaching consequences, the article further argues, for the politics of global climate governance. China’s discursive and diplomatic power in climate politics is growing as China builds alliances across the global South. China is leveraging this enhanced soft power to elevate the importance of adaptation in multilateral climate negotiations, advance a technocentric approach to climate mitigation, export its development model, and promote industrial-scale afforestation as a nature-based climate solution. China’s strategy is enhancing climate financing, technology transfers, renewable power, and adaptation infrastructure across the global South. To some extent, this is helping with a transition to a low-carbon world economy. Yet China’s leadership is also reinforcing incremental, technocratic, and growth-oriented solutions in global climate governance. These findings advance the understanding of China’s role in global environmental politics, especially its growing influence on climate governance in the global South.  相似文献   

20.
研究地球工程对海洋酸化的影响对于评估地球工程对全球气候和环境的影响有重要意义。文中使用中等复杂程度的地球系统模式,模拟了典型CO2高排放情景RCP8.5下,实施太阳辐射管理地球工程对海洋表面的pH和文石(碳酸钙的一种亚稳形态)饱和度的影响,并定量分析了各环境因子对海洋酸化影响的机理。模拟结果表明,在RCP8.5情景下,到2100年,相对于工业革命前水平,全球海洋表面平均pH下降了0.43,文石饱和度下降了1.77。相对于RCP8.5情景,2100年地球工程情景下全球海洋表面平均pH增加了0.003,而文石饱和度降低了0.16。地球工程通过改变溶解无机碳、碱度、温度等环境因子影响海洋酸化。相对于RCP8.5情景,实施地球工程引起的溶解无机碳浓度的增加使pH和文石饱和度均减小,碱度的增加使pH和文石饱和度均增大,温度的降低使pH增大而使文石饱和度减小。总体而言,太阳辐射管理地球工程可以降低全球温度,但无法减缓海洋酸化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号