首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Nutrient enrichment experiments with nitrogen (N) and phosphorus (P) were conducted with samples from two stations in the coastal waters of Qingdao, China, during summer to identify limiting nutrients. In late July of 2009, low P concentrations and the maximum photochemical efficiency of photosystem II (F v /F m ) in the initial samples together with F v /F m and chlorophyll a (Chl a) responses to P addition indicated P limitation at the two stations. In early August, low P levels still limited phytoplankton growth at station A. F v /F m and Chl a were the highest in the NP treatments at station B, suggesting an N/P co-limitation. In mid-September, nutrient concentrations and F v /F m were elevated and phytoplankton communities were healthy. Greater F v /F m and Chl a in the treatments with added P than those without the addition suggested potential P limitation at station A. Lack of F v /F m and Chl a responses following nutrient additions indicated N and P repletion at station B. At the end of July 2010, neither N nor P was limited at station B. Additionally, F v /F m coupled with 24-h-long nutrient enrichment experiments can be used to detect P limitation and N/P co-limitation to natural populations. This method can be more accurate for assessing co-limitation than the use of criteria of nutrient concentrations and ratios as indicators, and can provide more rapid results than nutrient addition bioassays using chlorophyll response as an indicator, when a population is potentially limited. Compared with the two conventional methods, the results based on F v /F m can also provide more detailed information about physiological states of the populations.  相似文献   

2.
We studied the effects of nitrogen (N) and phosphorus (P) supply on Fv/Fm (maximal quantum yield of photosystem II) in the algae Chaetoceros debilis, Dicrateria inornata, Platymonas subcordiformis and Heterosigma akashiwo to determine the sensitivity of Fv/Fm to P-limitation of the four species. Obvious decrease of Fv/Fm value was monitored in periods of P-depletion, the decrease showing different magnitudes among algal species. A more clear decrease of Fv/Fm in Platymonas subcordiformis and Het-erosigma akashiwo was observed, compared with that in Chaetoceros debilis and Dicrateria inornata. After the resupply of P, the index Fv/Fm of the four species all recovered quickly in 24 h. Cell division was maintained and chlorophyll content continued to increase until the end of the experiment in Platymonas subcordiformis and Heterosigma akashiwo, while in Chaetoceros debilis and Dicrateria inornata, the division stopped in the later period when the growth of organisms came into the stationary phase. The most obvious respond of chlorophyll content to P-additions was observed in Het-erosigma akashiwo culture in 24 h. The sensitivity of Fv/Fm to nutrient limitations is different among algal species, and much should be done to improve the application of this index.  相似文献   

3.
The effects of different phosphorus (P) concentrations (0.36, 3.6, and 36 μmol/L corresponding to low-, middle-, and high-P concentration groups, respectively) and nitrogen (N)/P ratios on the growth and photosynthetic characteristics of Skeletonema costatum and Prorocentrum donghaiense were studied. For both species, the high-P (HP) concentration group showed the greatest algal density and highest specific growth rate. Changes in the maximum efficiency of photosystem II (F v /F m ) were monitored under the various P and N/P conditions. The largest decrease in F v /F m was in the low-P (LP) group in S. costatum and in the HP group in P. donghaiense. There were high rapid light curves and photochemical quantum yields (Φ PSII) for S. costatum in the HP group, while the actual photosynthetic capacity was higher in P. donghaiense than in S. costatum in the MP group. Under eutrophic but relatively P-restricted conditions, P. donghaiense had higher photosynthetic activity and potential, which could cause this dinoflagellate to increasingly dominate the phytoplankton community in these conditions. Under the same P concentration and N/P ratio, P. donghaiense had a larger relative maximum rate of electron transport and higher Φ PS II values than those of S. costatum. These differences between P. donghaiense and S. costatum may explain the interaction and succession patterns of these two species in the Changjiang (Yangtze) River estuary from a photosynthesis perspective.  相似文献   

4.
Cells of Haematococcus pluvialis Flot. et Will were collected in four different growth phases. We quantified the initial and total enzyme activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) in crude extracts, and the relative expression of large-subunit ribulose-1,5-bisphosphate caboxylase / oxygenase (rbcL) mRNA. We measured the ratio of photosynthetic rate to respiration rate (P/R), maximal effective quantum yield of photosystem II (Fv/Fm), electron transport rate (ETR), actual photochemical efficiency of PSII in the light (ΦPSII), and non-photochemical quenching (NPQ). Green vegetative cells were found to be in the most active state, with a relatively higher P/R ratio. These cells also displayed the lowest NPQ and the highest Fv/Fm, ETR, and ΦPSII, indicating the most effective PSII. However, both Rubisco activity and rbcL mRNA expression were the lowest measured. In orange resting cysts with relatively lower P/R and NPQ, Rubisco activity and rbcL expression reached a peak, while Fv/Fm, ETR, and ΦPSII were the lowest measured. Taking into account the methods of astaxanthin induction used in industry, we suggest that Rubisco may participate in astaxanthin accumulation in H. pluvialis. A continuous and sufficient supply of a carbon source such as CO2 may therefore aid the large scale production of astaxanthin.  相似文献   

5.
The swimming endurance of whiteleg shrimp(Litopenaeus vannamei, 87.66 mm ± 0.25 mm, 7.73 g ± 0.06 g) was examined at various concentrations of dissolved oxygen(DO, 1.9, 3.8, 6.8 and 13.6 mg L-1) in a swimming channel against one of the five flow velocities(v1, v2, v3, v4 and v5). Metabolite contents in the plasma, hepatopancreas and pleopods muscle of the shrimp were quantified before and after swimming fatigue. The results revealed that the swimming speed and DO concentration were significant factors that affected the swimming endurance of L. vannamei. The relationship between swimming endurance and swimming speed at various DO concentrations can be described by the power model(ν·tb = a). The relationship between DO concentration(mg L-1) and the swimming ability index(SA∫ 9000I), defined as SAI =vdt( cm), can be described as SAI = 27.947 DO0.137(R2 = 0.9312). The 0level of DO concentration directly affected the physiology of shrimp, and exposure to low concentrations of DO led to the increases in lactate and energetic substrate content in the shrimp. In responding to the low DO concentration at 1.9 mg L-1 and the swimming stress, L. vannamei exhibited a mix of aerobic and anaerobic metabolism to satisfy the energetic demand, mainly characterized by the utilization of total protein and glycogen and the production of lactate and glucose. Fatigue from swimming led to severe loss of plasma triglyceride at v1, v2, and v3 with 1.9 mg L-1 DO, and at v-11 with 3.8, 6.8 and 13.6 mg L DO, whereas the plasma glucose content increased significantly at v3, v4 and v5 with 3.8 and 6.8 mg L-1 DO, and at v5 with 13.6 mg L-1 DO. The plasma total protein and hepatopancreas glycogen were highly depleted in shrimp by swimming fatigue at various DO concentrations, whereas the plasma lactate accumulated at high levels after swimming fatigue at different velocities. These results were of particular value to understanding the locomotory ability of whiteleg shrimp and its physiological changes, further contributing to the improvement of capture and rearing technique.  相似文献   

6.
We investigated the effects of dried macroalga Gracilaria lemaneiform (Rhodophyta) on photosynthesis of the bloom-forming microalga Chaetoceros curvisetus. C. curvisetus was cultured with different amounts of dried G. lemaneiformis under controlled laboratory conditions. We measured the photosynthetic oxygen evolution rate and established the chlorophyll a fluorescence transient (OJIP) curve coupled with its specific parameters. We observed concentration-dependent and time-dependent relationships between dried G. lemaneiformis and inhibition of photosynthesis in C. curvisetus. Co-culture with dried G. lemaneiformis also resulted in a decrease in the light-saturated maximum photosynthetic oxygen evolution rate (P~ax) in C. curvisetus, and a decrease in the OJIP curve along with its specific parameters; the maximum photochemical efficiency of PSII (FJFm), the amount of active PSII reaction centers per excited cross section at t=0 and t=--tFM (RC/CS0 and RC/CSm, respectively), the absorption flux per excited cross section at t=0 (ABS/ CS0), and the efficiency with which a trapped exciton moves an electron into the electron transport chain (~u0). The dark respiration rate (Rd) increased in C. curvisetus co-cultured with dried G. lemaneiformis. The JIP-test and the oxygen evolution results indicated that dried G. lemaneiJbrmis decreased the number of active reaction centers, blocked the electron transport chain, and damaged the oxygen-evolving complex of C. curvisetus. This result indicated that dried fragments of G. lemaneiformis could effectively inhibit photosynthesis of C. curvisetus, and thus, could serve as a functional product to control and mitigate C. curvisetus blooms.  相似文献   

7.
Recent observations support an emerging paradigm that climate variability dominates nutrient enrichment in costal eco-systems, which can explain seasonal and inter-annual variability of phytoplankton community composition, biomass (Chl-a), and primary production (PP). In this paper, we combined observation and modeling to investigate the regulation of phytoplankton dynamics in Chesapeake Bay. The year we chose is 1996 that has high river runoff and is usually called a ’wet year’. A 3-D physical-biogeochemical model based on ROMS was developed to simulate the seasonal cycle and the regional distributions of phytoplankton biomass and primary production in Chesapeake Bay. Based on the model results, NO3 presents a strong contrast to the river nitrate load during spring and the highest concentration in the bay reaches around 80 mmol Nm-3 . Compared with the normal year, phytoplankton bloom in spring of 1996 appears in lower latitudes with a higher concentration. Quantitative comparison between the modeled and observed seasonal averaged dissolved inorganic nitrogen concentrations shows that the model produces reliable results. The correlation coefficient r2 for all quantities exceeds 0.95, and the skill parameter for the four seasons is all above 0.95.  相似文献   

8.
Estimating carbon sequestration and nutrient accumulation rates in Northeast China are important to assess wetlands function as carbon sink buffering greenhouse gas increasing in North Asia. The objectives of this study were to estimate accreting rates of carbon and nutrients in typical temperate wetlands. Results indicated that average soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) contents were 37.81%, 1.59% and 0.08% in peatlands, 5.33%, 0.25% and 0.05% in marshes, 2.92%, 0.27% and 0.10% in marshy meadows, respectively. Chronologies reconstructed by 210 Pb in the present work were acceptable and reliable, and the average time to yield 0–40 cm depth sediment cores was 150 years. Average carbon sequestration rate(Carbonsq), nitrogen and phosphorus accumulation rates were 219.4 g C/(m~2·yr), 9.16 g N/(m~2·yr) and 0.46 g P/(m~2·yr) for peatland; 57.13 g C/(m~2·yr), 5.42 g N/(m~2·yr) and 2.16 g P/(m~2·yr) for marshy meadow; 78.35 g C/(m~2·yr), 8.70 g N/(m~2·yr) and 0.71 g P/(m2·yr) for marshy; respectively. Positive relations existed between Carbonsq with nitrogen and precipitations, indicating that Carbonsq might be strengthened in future climate scenarios.  相似文献   

9.
Vertical profiles of chl-a and primary productivity in the middle continental shelf area and eddy area of the East China Sea were studied using data from a cruise in the East China Sea in February to March, 1997 and a cruise in July, 1998. The results showed that chl-a vertical distribution closely related to in situ hydrological and nutrient conditions. Chla-a concentration ranged from 0.22 to 0.35 mg/m3 and 0.93–1.09 mg/m3 in the eddy area and in the middle continental shelf area, respectively. In both areas, chl-a concentrations in deep layers were slightly higher than those in shallow layers, but was of the same order of magnitude. In summer, when a thermocline existed in the water column, highest chl-a concentrations appeared at the base of the thermocline layers in both areas. In the eddy area, chl-a concentration maximized at 31.743 mg/m3, and averaged 1.143 mg/m3 below 30 m depth. In the middle continental shelf area, the highest chl-a concentration was 2.120 mg/m3, the average was 1.168 mg/m3. The primary productivity reached 1418.76 mgC/(m2·d) in summer and 1360.69 mgC/(m2·d) in winter. In the eddy area, the primary productivity was 787.50 mgC/(m2·d) in summer and 159.04 mgC/(m2·d) in winter. Vertical carbon sinking rate from the deep layer to the bottom in both areas is also discussed in this paper. Contribution NO. 4183 from the Institute of Oceanology, Chinese Academy of Sciences. Project No. 49636210 supported by NSFC.  相似文献   

10.
11.
Measurements of pH,total alkalinity(TA),partial pressure of CO2(pCO2) and air-sea CO2 flux(FCO2) were conducted for the inner continental shelf of the East China Sea(ECS) during August 2011.Variations in pCO2 distribution and FCO2 magnitude during the construction of the Three Gorges Dam(TGD)(2003-2009),and the potential effects of the TGD on the air-sea CO2 exchange were examined.Results showed that the ECS acts as an overall CO2 sink during summer,with pCO2 ranging from 107 to 585 μatm and an average FCO2 of-6.39 mmol/(m2·d).Low pCO2(<350 μatm) levels were observed at the central shelf(28°-32°N,123°-125.5°E) where most CO2-absorption occurred.High pCO2(>420 μatm) levels were found in the Changjiang estuary and Hangzhou Bay which acted as the main CO2 source.A negative relationship between pCO2 and salinity(R2=0.722 0) in the estuary zone indicated the predominant effect of the Changjiang Diluted Water(CDW) on the seawater CO2 system,whereas a positive relationship(R2=0.744 8) in the offshore zone revealed the influence of the Taiwan Current Warm Water(TCWW).Together with the historical data,our results indicated that the CO2 sink has shown a shift southwest while FCO2 exhibited dramatic fluctuation during the construction of the TGD,which is located in the middle reaches of the Changjiang.These variations probably reflect fluctuation in the Changjiang runoff,nutrient import,phytoplankton productivity,and sediment input,which are likely to have been caused by the operations of the TGD.Nevertheless,the potential influence of the TGD on the CO2 flux in the ECS is worthy of further study.  相似文献   

12.
This paper reports the first photosynthetic study of marestail in Jiuzhaigou. In this work, we used PAM fluorometry to examine photosynthetic rates of submerged and emerged marestail in three lakes. Three lakes were studied across a gradient of water temperature, with low water temperature conditions in Grass Lake and Arrow Bamboo Lake, and higher water temperature in Five Colored Lake. In the field, electron transport rates (ETRmax) were measured as rapid light curves (RLCs) by in situ yield measurements. Submerged and emerged marestail showed higher photosynthetic activity in Five Colored Lake compared to the other lakes, a response consistent with the adaptation of marestail in Five Colored Lake to high water temperature. The optimal temperature for photosynthesis of submerged marestail in Jiuzhaigou was about 12 °C. Nonphotochemical quenching (NPQ) of submerged and emerged marestail increased with increasing water temperature. Maximum quantum yield (F v/F m) of submerged marestail in Five Colored Lake showed full recovery at 1700 h due to higher NPQ. Further, the chlorophyll a for submerged marestail was the highest in Grass Lake and the lowest in Five Colored Lake. These results indicate that in different lakes the function of these aquatic plants is associated with a diversity of place-dependent environmental conditions, especially water temperature that leads to pronounced differences in the plant’s ecophysiological reactions.  相似文献   

13.
Manila clam(Ruditapes philippinarum) was monthly sampled from its benthic aquaculture area in Jiaozhou Bay from May 2009 to June 2010. The annual variations of major elemental composition, organic content, fatness and element ratio of Manila clam were examined. The element removal effect of clam farming in Jiaozhou Bay was analyzed based on natural mortality and clam harvest. The results indicated that the variation trend of carbon content in shell(Cshell) was similar to that in clam(Cclam). Such a variation was higher in summer and autumn than in other seasons, which ranged from 9.10 ± 0.13 to 10.38 ± 0.09 mmol g-1 and from 11.28 ± 0.29 to 12.36 ± 0.06 mmol g-1, respectively. Carbon content of flesh(Cflesh) showed an opposite variation trend to that of shell in most months, varying from 29.42 ± 0.05 to 33.64 ± 0.62 mmol g-1. Nitrogen content of shell(Nshell) and flesh(Nflesh) changed seasonally, which was relatively low in spring and summer. Nshell and Nflesh varied from 0.07 ± 0.009 to 0.14 ± 0.009 mmol g-1 and from 5.46 ± 0.12 to 7.39 ± 0.43 mmol g-1, respectively. Total nitrogen content of clam ranged from 0.50 ± 0.003 to 0.76 ± 0.10 mmol g-1 with a falling tend except for a high value in March 2010. Phosphorus content of clam(Nclam) fluctuated largely, while phosphorus content of shell(Pshell) was less varied than that of flesh(Pflesh). Pshell varied from 0.006 ± 0.001 to 0.016 ± 0.001 mmol g-1; while Pflesh fluctuated between 0.058 ± 0.017 and 0.293 ± 0.029 mmol g-1. Pclam ranged from 0.015 ± 0.002 to 0.041 ± 0.006 mmol g-1. Carbon and nitrogen content were slightly affected by shell length, width or height. Elemental contents were closely related to the reproduction cycle. The removal amounts of carbon, nitrogen and phosphorus from clam harvest and natural death in Jiaozhou Bay were 2.92×104 t, 1420 t and 145 t, respectively. The nutrient removal may aid to reduce the concentrations of nitrogen and phosphorus, the main causes of eutrophication, and to maintain the ecosystem health of Jiaozhou Bay.  相似文献   

14.
Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content(PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles(Na) and effective alleles(Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity(Ho) values were lower than the expected heterozygosity(He) values(0.526–0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. Fis values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise Fst values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks(11.3%) was much lower than that within stocks(88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.  相似文献   

15.
The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 μg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level(including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that diatoms were the main phytoplankton in this area, and Skeletonema costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema(mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus(spring) →Chaetoceros(summer and autumn) → Coscinodiscus(winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950 s-2000 s.  相似文献   

16.
Two surveys were performed for determining bacteria biomass (BB), temperature, salinity, chlorophyll a (chl-a) and nutrient concentrations at 11 stations with three sampling depths in the high-incidence regions of red tide in the East China Sea (ECS) in the spring of 2006. Temperature and salinity increased from nearshore to offshore region and from high latitude to low latitude in the two cruises of 2006. BB were between 0.3–5.2 mgC m−3 (about 2.1 mgC m−3 on average) and 0.2–6.0 mgC m−3 (about 2.7 mgC m−3 on average) respectively in the two cruises. BB in the surface layer decreased from the Changjiang River estuary to high sea and from low latitude to high latitude. The results showed that bacterial growth was regulated by temperature, primary production and inorganic nutrient concentrations depending on different hydrographic conditions. In the surface and middle layers where the primary production can supply enough organic substrate, temperature was the main factor to control bacteria biomass. BB showed a good correlation between the surface and middle layers in both cruises. The distribution of nutrients during both cruises showed a similar decreasing trend from nearshore region and high latitude to offshore region and low latitude. High BB values were mainly recorded from samples in the middle layer where chl-a concentrations were also high, indicating primary production being strongly correlated with temperature over the ECS shelf. In the offshore area, phosphate and silicate became limiting factors for phytoplankton growth with indirect influence on BB. Bacteria played an important role in nitrogen regeneration process turning organic nitrogen to inorganic forms such as NH4 +. The increasing ratio of NH4 +/DIN could be a proof of that.  相似文献   

17.
Effects of nitrogen (N) and phosphorus (P) from different sources and at different concentrations on the growth of Levanderina fissa (= Gyrodinium instriatum) were studied in laboratory conditions. The findings might explain the recurrent blooms of this species in Pearl River Estuary, China. Results showed that nutrient limitation significantly inhibited the growth of L. fissa. The values of specific growth rate (μ max) and half-saturation nutrient concentration (K S) were 0.37 divisions/d and 8.49 μmol L?1 for N, and 0.39 divisions/d and 1.99 μmol L?1 for P, respectively. Based on K S values, dissolved inorganic N level in PRE was sufficient to support the high proliferation of L. fissa, while dissolved inorganic P concentration was far lower than the minimum requirement for its effective growth. L. fissa was not able to utilize dissolved organic N (DON) compounds such as urea, amino acids, and uric acid. However, it grew well by using a wide variety of dissolved organic P (DOP) sources like nucleotides, glycerophosphate, and 4-nitrophenylphosphate. The results from this study suggested that the ability in DOP utilization of L. fissa offers this species a competitive advantage in phytoplankton communities. The high level and continuous supply of DIN, enrichment of DOP, together with warm climate and low salinity in the Pearl River Estuary provided a suitable nutrient niche for the growth of L. fissa, and resulted in the recurrent blooms in the estuary.  相似文献   

18.
Gracilaria lemaneiformis Bory is an economically important alga that is primarily used for agar production. Although tetraspores are ideal seeds for the cultivation of G. lemaneiformis, the most popular culture method is currently based on vegetative fragments, which is labor-intensive and time-consuming. In this study, we optimized the conditions for tetraspore release and evaluated the photosynthetic activities of different colonies formed from the branches of G. lemaneiformis using a PAM (pulse-amplitude-modulated) measuring system. The results showed that variations in temperature and salinityhad significant effects on tetraspore yield. However, variations in the photon flux density (from 15 μmol m−2 s−1 to 480 μmol m−2 s−1) had no apparent effect on tetraspore yield. Moreover, the PAM-parameters Y(I), Y(II), ETR(I), ETR(II) and F v/F m of colonies formed from different branches showed the same trend: parameter values of first generation branches>second generation branches>third generation branches. These results suggest that the photosynthetic activities of different colonies of branches changed with the same trend. Furthermore, photosynthesis in G. lemaneiformis was found to be involved in vegetative reproduction and tetraspore formation. Finally, the first generation branches grew slowly, but accumulated organic compounds to form large numbers of tetraspores. Taken together, these results showed that the first generation branches are ideal materials for the release of tetraspores.  相似文献   

19.
To evaluate the diurnal and seasonal variations in soil respiration(Rs) and understand the controlling factors, we measured carbon dioxide(CO2) fluxes and their environmental variables using a LI-6400 soil CO2 flux system at a temperate Leymus chinensis meadow steppe in the western Songnen Plain of China in the growing season(May–October) in 2011 and 2012. The diurnal patterns of soil respiration could be expressed as single peak curves, reaching to the maximum at 11:00–15:00 and falling to the minimum at 21:00–23:00(or before dawn). The time-window between 7:00 and 9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 efflux. In the growing season, the daily value of soil CO2 efflux was moderate in late spring(1.06–2.51 μmol/(m2·s) in May), increased sharply and presented a peak in summer(2.95–3.94 μmol/(m2·s) in July), and then decreased in autumn(0.74–0.97 μmol/(m2·s) in October). Soil temperature(Ts) exerted dominant control on the diurnal and seasonal variations of soil respiration. The temperature sensitivity of soil respiration(Q10) exhibited a large seasonal variation, ranging from 1.35 to 3.32, and decreased with an increasing soil temperature. Rs gradually increased with increasing soil water content(Ws) and tended to decrease when Ws exceeded the optimum water content(27%) of Rs. The Ts and Ws had a confounding effect on Rs, and the two-variable equations could account for 72% of the variation in soil respiration(p 0.01).  相似文献   

20.
The increasing riverine pollutants have resulted in nutrient enrichment and deterioration of water quality in the coastal water of Guangxi Province, China. However, the quantitative relationship between nutrient loads and water quality responses, which is crucial for developing eutrophication control strategies, is not well studied. In this study, the riverine fluxes of nutrients were quantified and integrated with nutrient cycling and phytoplankton dynamics by using box models for Guangxi coastal bays. The model concepts and biogeochemical equations were the same; while most model parameters were specific for each bay. The parameters were calibrated with seasonal observations during 2006–2007, and validated with yearly averaged measurements in 2009. The general features of nutrient and phytoplankton dynamics were reproduced, and the models were proved feasible under a wide range of bay conditions. Dissolved inorganic nitrogen was depleted during the spring algal bloom in Zhenzhu Bay and Fangcheng Bay with relatively less nutrient inputs. Phosphorus concentration was high in spring, which decreased then due to continuous phytoplankton consumption. Chlorophyll-a concentration reached its annual maximum in summer, but was the minimum in winter. Eutrophication was characterized by both an increase in nutrient concentrations and phytoplankton biomass in Lianzhou Bay. Either about 80% reduction of nitrogen or 70% reduction of phosphorus was required to control the algal bloom in Lianzhou Bay. Defects of the models were discussed and suggestions to the environmental protection of Guangxi coastal bays were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号