首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific El Nio (CP-El Nio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific El Nio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-El Nio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the re-versed zonal advective feedback can cause the phase transition of CP-El Nio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.  相似文献   

2.
1 Introduction TheMadden JulianOscillation (MJO)isastrongatmosphericconvection phenomenonoccurringovertheEasternIndianOceanandtheTropicalWesternPacific,usuallyinregionswithseasurfacetempera tures (SSTs)over 2 9℃ .Theeastwardmovingofalarge scalecirculat…  相似文献   

3.
Based on the 18-year(1993–2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature(SST) and simple ocean data assimilation datasets,this study investigated the patterns of the SST anomalies(SSTAs) that occurred in the South China Sea(SCS) during the mature phase of the El Ni?o/Southern Oscillation.The most dominant characteristic was that of the outof-phase variation between southwestern and northeastern parts of the SCS,which was influenced primarily by the net surface heat flux and by horizontal thermal advection.The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during El Ni?o episodes.Conversely,it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during El Ni?o episodes led to the development of the positive SSTA in the southwestern SCS.  相似文献   

4.
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (IOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an El Niño (La Niña) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).  相似文献   

5.
By using monthly historical sea surface temperature (SST) data for the years from 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied in this paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Niño-3 region SST anomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Niño-3 region SSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological position of the WPWPC corresponds to about a l°C anomaly in the Niño-3 region area-mean SST. This study connects the WPWPC zonal displacement with the Niño-3 SSTA, and it may be helpful in better understanding the fact that the WPWP eastward extension is conducive to the Niño-3 region SST increase during an El Niño-Southern Oscillation (ENSO) event.  相似文献   

6.
El Nio events with an eastern Pacific pattern(EP) and central Pacific pattern(CP) were first separated using rotated empirical orthogonal functions(REOF).Lead/lag regression and rotated singular value decomposition(RSVD) analyses were then carried out to study the relation between the surface zonal wind(SZW) anomalies and sea surface temperature(SST) anomalies in the tropical Pacific.A possible physical process for the CP El Ni o was proposed.For the EP El Ni o,strong westerly anomalies that spread eastward continuously produce an anomalous ocean zonal convergence zone(ZCZ) centered on about 165°W.This SZW anomaly pattern favors poleward and eastward Sverdrup transport at the equator.For the CP El Nio,westerly anomalies and the ZCZ are mainly confined to the western Pacific,and easterly anomalies blow in the eastern Pacific.This SZW anomaly pattern restrains poleward and eastward Sverdrup transport at the equator;however,there is an eastward Sverdrup transport at about 5°N,which favors the warming of the north-eastern tropical Pacific.It is found that the slowness of eastward propagation of subsurface warm water(partly from the downwelling caused by Ekman convergence and the ZCZ) is due to the slowdown of the undercurrent in the central basin,and vertical advection in the central Pacific may be important in the formation and disappearance of the CP El Nio.  相似文献   

7.
By analyzing the variability of global SST(sea surface temperature) anomalies,we propose a unified Ni o index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7°C contour line of the standard deviation of the SST anomalies and try to unify the traditional Ni o regions into a single entity.The unified Ni o region covers almost all of the traditional Ni o regions.The anomaly time series of the averaged SST over this region are closely correlated to historical Ni o indices.The anomaly time series of the zonal and meridional thermal centroid have close correlation with historical TNI(Trans-Ni o index) indices,showing differences among El Ni o(La Ni a) events.The meridional centroid anomaly suggests that areas of maximum temperature anomaly are moving meridionally(although slightly) with synchronous zonal movement.The zonal centroid anomalies of the unified Ni o region are found helpful in the classification of the Eastern Pacific(EP)/Central Pacific(CP) types of El Ni o events.More importantly,the zonal centroid anomaly shows that warm areas might move during a single warming/cooling phase.All the current Ni o indices can be well represented by a simple linear combination of unified Ni o indices,which suggests that the thermal anomaly(SSTA) and thermal centroid location anomaly of the unified Ni o region would yield a more complete image of each El Ni o/ La Ni a event.  相似文献   

8.
The South China Sea (SCS) is significantly influenced by El Niño and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Niño events. During and after the mature phase of El Niño, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of El Niño, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an El Niño year.  相似文献   

9.
The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.  相似文献   

10.
Interannual variations of Pacific North Equatorial Current (NEC) transport during eastern-Pacific El Niños (EP-El Niños) and central-Pacific El Niños (CP-El Niños) are investigated by composite analysis with European Centre for Medium-Range Weather Forecast Ocean Analysis/Reanalysis System 3. During EP-El Niño, NEC transport shows significant positive anomalies from the developing to decay phases, with the largest anomalies around the mature phase. During CP-El Niño, however, the NEC transport only shows positive anomalies before the mature phase, with much weaker anomalies than those during EP-El Niño. The NEC transport variations are strongly associated with variations of the tropical gyre and wind forcing in the tropical North Pacific. During EP-El Niño, strong westerly wind anomalies and positive wind stress curl anomalies in the tropical North Pacific induce local upward Ekman pumping and westward-propagating upwelling Rossby waves in the ocean, lowering the sea surface height and generating a cyclonic gyre anomaly in the western tropical Pacific. During CP-El Niño, however, strength of the wind and associated Ekman pumping velocity are very weak. Negative sea surface height and cyclonic flow anomalies are slightly north of those during EP El Niño.  相似文献   

11.
We analyzed interdecadal variability of the South China Sea monsoon and its relationship with latent heat flux in the Pacific Ocean, using NCEP wind field and OAFlux heat flux datasets. Results indicate that South China Sea monsoon intensity had an obvious interdecadal variation with a decreasing trend. Variability of the monsoon was significantly correlated with latent heat flux in the Kuroshio area and tropical Pacific Ocean. Variability of latent heat flux in the Kuroshio area had an interdecadal increasing trend, while that in the tropical Pacific Ocean had an interdecadal decreasing trend. Latent heat flux variability in these two sea areas was used to establish a latent heat flux index, which had positive correlation with variability of the South China Sea monsoon. When the latent heat flux was 18 months ahead of the South China Sea monsoon, the correlation coefficient maximized at 0.58 (N=612), with a 99.9% significance level of 0.15. Thus, it is suggested that latent heat flux variability in the two areas contributes greatly to interdecadal variability of the South China Sea monsoon.  相似文献   

12.
This paper focuses on the effects of two types of El Niño events on tropical cyclone activity. We classified El Niño events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an eastern type and a central type. Then we selected strong tropical cyclones to statistically analyze the tropical cyclone characteristics during different events and their effects, as well as to study the possible mechanisms related to thermodynamic and dynamic factors. The tropical cyclone generation areas were found to be very similar during the two kinds of events. The average number of tropical cyclone in the eastern event is more than that in central event, and the hurricane in northeastern Pacific (HNP) has more energy than the typhoon in northwestern Pacific (TNP) in all cases. The seasonal distribution of the TNP high-incidence centers during central El Niño events is opposite to that of the HNP. The TNP accumulated cyclone energy (ACE) intensity is similar in the fall and summer, and the HNP ACE intensity in the summer is greater than that in the fall. The SSTs are consistent with the TNP and HNP movement trends. The Walker circulation intensity was strongly affected by the eastern events, but it quickly returned to its normal state, while the intensity was slightly reduced in the central events, and it slowly returned to its normal state. The vertical velocity distributions in the Pacific are different at different stages of both events, and the distributions of vertical velocity anomalies for typhoons and hurricanes are consistent.  相似文献   

13.
Based on 48-year (1958-2006) ocean reanalysis data of Simple Ocean Data Assimilation and 23-year (1984-2006) global ocean-surface heat flux products developed by the Objectively Analyzed Air-Sea Heat Flux Project, meridional variation of the western Pacific Warm Pool (WPWP) is addressed. The results show that there is a significant expansion of the northern edge of the WPWP in the late 1990s and early 2000s. This variation is mainly within 120°E-160°E by 8°N-20°N, we define this region (120°E-160°E by 8°N-20°N) as the core region. Furthermore, analyses on upper ocean heat budget show that the short wave radiation plays a key role in the northward expansion of the northern edge of the WPWP in the core region. It is proved that the northward expansion may be caused by the change of the mixed layer which became shallower in 1994-2006 compared with 1984-1993 in the study region. The short wave radiation flux distribution within the shallower mixed layer leads to a positive anomaly in seawater temperature, promoting the northward expansion of the WPWP.  相似文献   

14.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Niño events. The temporal mode of VEOF-2 is in good agreement with the curve of the Niño 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Niño event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Niño occurs in winter. If El Niño happens in summer, the reverse is true.  相似文献   

15.
The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, internnual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countecurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC related to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Niño-Southern Oscillation (ENSO) suggests that before El Niño (La Niña) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Niño (La Niña) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.  相似文献   

16.
It is well known that Tropical cyclone(TC) activities over the Pacific are affected by El Nino events. In most studies El Nino phenomena have been separated into east Pacific warming(EPW) and central Pacific warming(CPW) based on the location of maximum SST anomaly. Since these two kinds of El Nino have different impacts on Pacific tropical cyclone activities, this study investigates different features of TC activities and the genesis potential index(GPI) during EPW years and CPW years. Four contrib- uting factors, i.e., the low-level absolute vorticity, the relative humidity, the potential intensity and the vertical wind shear, are exam- ined to determine which factors are most important in causing the anomalous TC activities. Our results show that during EPW years in July–August(JA0), TC activities are more frequent with stronger intensity over the Western North Pacific(WNP) and Eastern North Pacific(ENP). The maximum anomaly center of TC activities then drifts eastward significantly in September–October(SO0). However, centers of anomalous TC activity barely change from JA0 to SO0 during CPW years. In January–February–March(JFM1) of the decaying years of warming events, TC frequency and intensity both have positive anomaly over the South Pacific. The anoma- lies in EPW years have larger amplitude and wider spatial distribution than those in CPW years. These anomalous activities of TC are associated with GPI anomaly and the key factors affecting GPI anomaly for each ocean basin are quite different.  相似文献   

17.
Tide gauge data are used to investigate sea level variability off the northwest coast of the South China Sea (SCS) in 2012, and a significant sea level elevation with a magnitude approaching 79 mm is observed. Analysis suggests that an abnormal sea surface heat flux and freshwater flux may have contributed to this abnormal rise in sea level, together with the remote influence of an ENSO event. Further investigation shows that the event was dominated by the positive freshwater flux, where large volumes of water entered the ocean, and a maximum is centered to the south of Guangdong province, China. Simultaneously, a positive anomalous heat flux occurred in the northwestern part of the SCS, which is considered to have made a positive contribution to the high local sea level elevation. In addition to the heat flux, the ENSO event also had a significant effect on the event, where the La Niña-induced northwest Pacific cyclone contributed to sea level rise over the northwestern SCS through dynamic and thermodynamic interactions.  相似文献   

18.
The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.  相似文献   

19.
This paper attempts to analyze in detail the remote influence of the Indian Ocean Basin warming on the Northwest Pacific (NWP) during the year of decaying El Niño. Observation data and the Fast Ocean-Atmosphere coupled Model 1.5 were used to investigate the triggering conditions under which the remote influence is formed between the positive sea surface temperature (SST) anomaly in the North Indian Ocean and the Anomalous Northwest Pacific anticyclone (ANWPA). Our research show that it is only when there is a contributory background wind field over the Indian Ocean, i.e., when the Indian Summer Monsoon (ISM) reaches its peak, that the warmer SST anomaly in the North Indian Ocean incites significant easterly wind anomalies in the lower atmosphere of the Indo-West tropical Pacific. This then produces the remote influence on the ANWPA. Therefore, the SST anomaly in the North Indian Ocean might interfere with the prediction of the East Asia Summer Monsoon in the year of decaying El Niño. Both the sustaining effect of local negative SST anomalies in the NWP, and the remote effect of positive SST anomalies in the North Indian Ocean on the ANWPA, should be considered in further research.  相似文献   

20.
We analyzed the temporal and spatial variation, and interannual variability of the North Pacific meridional overturning circulation using an empirical orthogonal function method, and calculated mass transport using Simple Ocean Data Assimilation Data from 1958–2008. The meridional streamfunction field in the North Pacific tilts N-S; the Tropical Cell (TC), Subtropical Cell (STC), and Deep Tropical Cell (DTC) may be in phase on an annual time scale; the TC and the STC are out of phase on an interannual time scale, but the interannual variability of the DTC is complex. The TC and STC interannual variability is associated with ENSO (El Niño-Southern Oscillation). The TC northward, southward, upward, and downward transports all weaken in El Niños and strengthen in La Niñas. The STC northward and southward transports are out of phase, while the STC northward and downward transports are in phase. Sea-surface water that reaches the middle latitude and is subducted may not completely return to the tropics. The zonal wind anomalies over the central North Pacific, which control Ekman transport, and the east-west slope of the sea level may be major factors causing the TC northward and southward transport interannual variability and the STC northward and southward transports on the interannual time scale. The DTC northward and southward transports decrease during strong El Niños and increase during strong La Niñas. DTC upward and downward transports are not strongly correlated with the Niño-3 index and may not be completely controlled by ENSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号