首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation(CNOP)method with Regional Ocean Modeling System(ROMS).Firstly,we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram,then choose two equilibrium states(called jet-up state and jet-down state)as reference states respectively,propose Principal Component Analysisbased Simulated Annealing(PCASA)algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and j et-down state.PCASA algorithm is an adj oint-free method which searches optimal solution randomly in the whole solution space.In addition,we investigate CNOP-type initial perturbations how to evolve with time.The results show:(1)the CNOP-type perturbations present a two-cell structure,and gradually evolves into a three-cell structure at predictive time;(2)by superimpo sing CNOP-type perturbations on the j et-up state and integrating ROMS,double-gyre circulation transfers from jet-up state to jet-down state,and vice versa,and random initial perturbations don't cause the transitions,which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3)by analyzing the transition process of double-gyre regime transitions,we find that CNOPtype initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities,and barotropic instability contributes more significantly to the fast-growth of the perturbations.The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation.  相似文献   

2.
The spatial structure and variation of the upwelling in the waters east and northeast of Hainan Island, China during 2000-2007 were investigated using a nested high-resolution Princeton Ocean Model (POM) forced by QuikSCAT winds. The model produced good simulations of the summer upwelling and the seasonal and annual variability. Strong upwelling occurs from mid-July to mid-August with a peak east of Hainan Island associated with the southwesterly monsoon in the South China Sea. Sensitivity experiments indicated that when the local wind stress controls the variability of the upwelling, the large-scale circulation significantly enhances the upwelling northeast of Hainan Island by inducing a local upwelling and transporting cold water northeast-ward along the island’s east coast. The joint effects of the local wind stress and large-scale circulation result in stronger upwelling northeast of Hainan Island. This implies that the annual variation of the upwelling northeast of Hainan Island is controlled not only by the local alongshore wind stress but also by the large-scale circulation. This result will help us investigate the decadal variation of the upwelling in this region in the future.  相似文献   

3.
A study on the nonspecific immunity of Litopenaeus vannamei ever inhabiting freshwater and seawater was carried out at different molt stages by comparing their total hemocyte count(THC) and respiratory burst(RB) and activity of phenol oxidase(PO), nitric oxide synthase(NOS) and lysozyme(LY). Two-way ANOVA showed that salinity and molt stage independently affected THC and RB and the activity of PO, NOS and LY of juvenile L. vannamei significantly(P 0.05). The THC and RB and the activity of NOS gradually increased from the post-molt stages(A and B) to the pre-molt stages(D0–D3), which were common in shrimps inhabiting freshwater and seawater. The activity of PO peaked at the inter-molt stage(C), and touched the lowest at the post-molt stage in freshwater and pre-molt stage in seawater. The activity of LY was stable over the molt cycle. The RB and the activity of PO, NOS and LY of juvenile L. vannamei were significantly lower in freshwater than in seawater; whereas THC was significantly higher in freshwater than in seawater(P 0.05). It was concluded that the post-molt stage(especially stage A) was critical to shrimp culture, which should be intensively attended when L. vannamei was cultured in freshwater.  相似文献   

4.
Based on a barotropic inflow-outflow model,we examine the formation of the Kuroshio large meander(LM) using conditional nonlinear optimal perturbation(CNOP) method.Both linear and nonlinear evolutions of such perturbations obtained by this method are investigated.The results show that the nonlinear evolution can result in the Kuroshio transition from a straight to LM path,whereas the linear evolution cannot.This implies that nonlinearity plays an important role in the formation of the Kuroshio LM path.The nonlinearity exists as advection in the evolution equations of the perturbation derived from the barotropic inflow-outflow model,namely the nonlinear advection of the perturbation by the perturbation(NAPP).By examining the role of this nonlinearity,we find that the NAPP tends to move the cyclonic eddy induced by the CNOP-type perturbation westward.Together with the beta effect,this offsets part of the eastward advection caused by the interaction between the perturbation and the background flow.Hence,the eastward movement of the cyclonic eddy is significantly weakened,effectively causing the eddy to develop.The sufficient evolution of this cyclonic eddy leads to the formation of the Kuroshio LM.  相似文献   

5.
The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.  相似文献   

6.
We used the conditional nonlinear optimal perturbation(CNOP) method to explore the optimal precursor of the transition from Kuroshio large meander(LM) to straight path within a barotropic inflowoutflow model,and found that large amplitudes of the optimal precursor are mainly located in the east of Kyushu,which implies that perturbations in the region are important for the transition from LM to straight path.Furthermore,we investigated the transition processes caused by the optimal precursor,and found that these processes could be divided into three stages.In the first stage,a cyclonic eddy is advected to the formation region of the Kuroshio large meander,which enhances the LM path and causes a cyclonic eddy to shed from the Kuroshio mainstream.This process causes the LM path to change into a small meander path.Subsequently,the small meander is maintained for a period because the vorticity advection is balanced by the beta effect in the second stage.In the third stage,the small meander weakens and the straight path ultimately forms.The positive vorticity advecting downstream is responsible for this process.The exploration of the optimal precursor will conduce to improve the prediction of the transition processes from LM path to straight path,and its spatial structure can be used to guide Kuroshio targeted observation studies.  相似文献   

7.
Inter-tidal(subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al.(2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian in- ter-tidal concentration(LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is nu- merically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as ‘flat-bottom', ‘stairs' and ‘cape' case, re- spectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the ‘flat-bottom' case still meets the convectively weakly nonlinear condi- tion. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the de- pendence of the LIS(Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coast- lines, and that in the latter region is due to the presence of the estuarine salinity front.  相似文献   

8.
We addressed the mesoscale structure variation of the central South China Sea (SCS) with the measurements by a long-lived Argo float and a high-resolution ATLAS buoy during 1998–2002. T-S diagram indicates cooling and freshening events in 2000 and 2001 with lower salinity (0.5–0.8) and lower temperature (1–1.7°C). Significant decrease in the net heat flux and increase in the precipitation suggest that the cooling and freshening is due to extra forcing by the atmosphere. Additional to large year-to-year changes, intraseasonal variability is moderate in the research area. The axis of the maximum intraseasonal temperature and salinity signals are mainly located on the thermocline. Typically, amplitude and period of intraseasonal temperature is about 2°C and 40–60 days, and that of salinity is 0.3–0.5 and 35–60 days. Rapidly-changing winds, heat flux, and precipitation are critical in controlling the intraseasonal fluctuations of the mixed layer of the area. Studies on heat and freshwater balance in the mixed-layer further suggest that horizontal advection plays an important role in intraseasonal fluctuation in the upper ocean. In addition, the energetic mesoscale propagation radiated from the east boundary is linked to the intraseasonal variability in winter.  相似文献   

9.
基于集合卡尔曼变换的区域集合预报初步研究   总被引:7,自引:0,他引:7  
为了深入研究集合卡尔曼变换(Ensemble Transform Kalman Filter,ETKF)初值扰动方法,提高集合预报质量,从全球大集合预报资料中提取初始扰动场,建立区域模式的ETKF初值扰动方案,对2008年7月22日发生在中国东部的一次暴雨过程进行集合预报试验,并分析ETKF方案构造的扰动场特征和集合预报效果。结果表明,由ETKF初始扰动方案产生的扰动场大小与分布合理,能够反映观测站点的空间分布,能够保持所有正交、不相关方向的误差方差。集合预报降水落区相对控制预报有所改善,集合平均小雨和中雨TS评分和BS评分总体优于控制预报。24h集合预报的Talagrand分布优于36h预报。试验结果揭示了ETKF初值扰动方案的基本性质及利用ETKF方法进行区域集合预报的可行性。  相似文献   

10.
A global atmospheric general circulation model (L9R15 AGCMs) forced by COADS SST was integrated from 1945 to 1993. Interannual and interdecadal variability of the simulated surface wind over the tropical Pacific was analyzed and shown to agree vey well with observation. Simulation of surface wind over the central-western equatorial Pacific was more successful than that over the eastern Pacific. Zonal propagating feature of interannual variability of the tropical Pacific wind anomalies and its decadal difference were also simulated successfully. The close agreement between simulation and observation on the existence of obvious interdecadal variability of tropical Pacific surface wind attested to the high simulation capability of AGCM.  相似文献   

11.
Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1998-2002). We analyzed decadal variability of chlorophyll a by comparing the products of the two observation periods. The relationships of variability in chlorophyll a with sea surface wind speed (SSW), sea surface temperature (SST), wind stress (WS), and mixed layer depth (MLD) were determined. The results indicate that there is obvious chlorophyll a decadal variability in the SCS. The decadal chlorophyll a presents distinct seasonal variability in characteristics, which may be as a result of various different dynamic processes. The negative chlorophyll a concentration anomaly in January was associated with the warming of SST and a shallower MLD. Generally, there were higher chlorophyll a concentrations in spring during the SeaWiFS period compared with the CZCS period. However, the chlorophyll a concentration exhibits some regional differences during this season, leading to an explanation being difficult. The deepened MLD may have contributed to the positive chlorophyll a concentration anomalies from the northwestern Luzon Island to the northeastern region of Vietnam during April and May. The increases of chlorophyll a concentration in northwestern Borneo during May may be because the stronger SSW and higher WS produce a deeper mixed layer and convective mixing, leading to high levels of nutrient concentrations. The higher chlorophyll a off southeastern Vietnam may be associated with the advective transport of the colder water extending from the Karimata Strait to southeastern Vietnam.  相似文献   

12.
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850–2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.  相似文献   

13.
The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, internnual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countecurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC related to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Niño-Southern Oscillation (ENSO) suggests that before El Niño (La Niña) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Niño (La Niña) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.  相似文献   

14.
As a multi-branch estuary system, the Yangtze Estuary presents distinctive characteristics of hydrodynamic processes through co-action among river runoff, tides, wind-waves, and gravitational circulation. To study the pathways of flushing water along all of the estuary's branches and analyze their differences, especially those due to the influence of seawater intrusion and discharge variations, a free surface flow modeling suite TELEMAC-MASCARET involving passive tracers was applied to the Yangtze Estuary and the adjacent waters. The open boundary conditions were provided by the Nao.99 b model(Matsumoto et al., 2000), which was calibrated using observed velocity and salinity data obtained in March 2002. The water age, which was used as the diagnostic tool to study the flushing efficiency of the water body across the estuary, was solved by additional advection-diffusion-reaction equations implemented in the TELEMAC modeling system. The transport properties were investigated under different river discharge scenarios, which represented seasonal impacts; aspects relating to the influence of tide, surface wind stress, and density-induced circulation on age were also investigated. Model results showed that river runoff is one of the dominant factors influencing the spatial distribution of the mean age, while tidal force is another important factor. The horizontal freshwater age distribution demonstrated similarity compared with the salinity distribution; the vertical age distribution resembled the stratification pattern of salinity in all branches where stratification persists. An experimental numerical simulation of tracing saltwater age from the lower reaches of the estuary was conducted, and implicated the connectivity with transport processes of freshwater from upstream. Additionally, a particle tracking algorithm was used to analyze the dynamic characteristics of the four passages. The South Passage and South Channel were found to be significant as main water flow passages, while salinity intrusion in the North Branch was found to cause a return flow that partially joins the South Branch flushing water.  相似文献   

15.
Data from satellite altimetry and in situ observations together with the Hybrid Coordinate Ocean Model(HYCOM)reanalysis data were used to investigate the mechanism and formation of an anticyclonic eddy in the northeastern South China Sea(SCS).Analysis of water mass using cruise data indicated that the water captured in the eddy differs from those in the SCS,the Kuroshio intrusion,and the eddy-forming region.Data from sea surface height(SSH)and sea level anomaly(SLA)indicate that the eddy formed due both to the Kuroshio intrusion and the local circulation in the SCS.The Kuroshio intrusion is present at the start of the eddy growth(March 5-9)before Kuroshio leaps the Luzon Strait.The eddy then becomes larger and stronger in the absence of the Kuroshio intrusion.From the eddy budget of the HYCOM reanalysis data,the formation of the eddy goes in three steps.By the third step,the eddy had become affected by variations of local SCS circulation,which is more strongly than in the first step in which it is affected more by the Kuroshio intrusion.The variability of the temperature and salinity inside the eddy provide a support to this conclusion.The water in the SCS intruded into the eddy from the southeast,which decrease the salinity gradually in the southern part of the eddy during the growth period.  相似文献   

16.
A multiple time scale perturbation method is used to discuss the Lagrangian residual current and residual transport on the basis of a weakly nonlinear dynamic model of shallow seas. The governing equations for the long-term variation of zero order “apparent concentration” (which is a linear combination of salinity, temperature of seawater and the concentration of any tracer which is conservative and passive) and its mean value over tidal cycles are obtained for the system with single tidal constituent, and for the one with multi-constituents, winds and thermohaline. The equations for the two cases are in the same form and show this long-term variation resulted from the cumulative effect of residual convection and turbulent diffusion. The multiple time scale variation of current is caused by tides, winds, and the thermohaline and the nonlinear effects of the system. The derived set of governing field equations of the Lagrangian current for this multiple time scale system is also in the same form as that for a single time scale system.  相似文献   

17.
The Arctic is experiencing a significant warming trend as well as a decadal oscillation. The atmospheric circulation represented by the Polar Vortex and the sea ice cover show decadal variabilities, while it has been difficult to reveal the decadal oscillation from the ocean interior. The recent distribution of Russian hydrochemical data collected from the Arctic Basin provides useful information on ocean interior variabilities. Silicate is used to provide the most valuable data for showing the boundary between the silicate-rich Pacific Water and the opposite Atlantic Water. Here, it is assumed that the silicate distribution receives minor influence from seasonal biological productivity and Siberian Rivers outflow. It shows a clear maximum around 100m depth in the Canada Basin, along with a vertical gradient below 100 m, which provides information on the vertical motion of the upper boundary of the Atlantic Water at a decadal time scale. The boundary shifts upward (downward), as realized by the silicate reduction (increase) at a fixed depth, responding to a more intense (weaker) Polar Vortex or a positive (negative) phase of the Arctic Oscillation. A coupled ice-ocean model is employed to reconstruct this decadal oscillation.  相似文献   

18.
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Secondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order approximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.  相似文献   

19.
In order to solve the problems of multi-parameter,multi-extreme and multi-solution in the nonlinear iterative optimization process of Rayleigh wave inversion,the artificial bee colony(ABC)algorithm is selected for global nonlinear inversion.The global nonlinear inversion method does not rely on a strict initial model and does not need to calculate the derivative of the objective function.The ABC algorithm uses the local optimization behavior of each individual artificial bee to finally highlight the global optimal value in the colony,and the convergence speed is faster.While searching for the global optimal solution,an effective local search can also be performed to ensure the reliability of the inversion results.This paper uses the ABC algorithm to perform Rayleigh wave dispersion inversion on the actual seismic data to obtain a clear undergrounding of shear wave velocity profile and accurately identify the location of the high-velocity interlayer.It is verified that the ABC algorithm used in the inversion of the Rayleigh wave dispersion curve is stable and converges quickly.  相似文献   

20.
The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号