首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ultraviolet Coronagraph Spectrometer on the SOHO satellite covers the 940–1350 Å range as well as the 470–630 Å range in second order. It has detected coronal emission lines of H, N, O, Mg, Al, Si, S, Ar, Ca, Fe, and Ni, particularly in coronal streamers. Resonance scattering of emission lines from the solar disk dominates the intensities of a few lines, but electron collisional excitation produces most of the lines observed. Resonance, intercombination and forbidden lines are seen, and their relative line intensities are diagnostics for the ionization state and elemental abundances of the coronal gas. The elemental composition of the solar corona and solar wind vary, with the abundance of each element related to the ionization potential of its neutral atom (First Ionization Potential–FIP). It is often difficult to obtain absolute abundances, rather than abundances relative to O or Si. In this paper, we study the ionization state of the gas in two coronal streamers, and we determine the absolute abundances of oxygen and other elements in the streamers. The ionization state is close to that of a log T = 6.2 plasma. The abundances vary among, and even within, streamers. The helium abundance is lower than photospheric, and the FIP effect is present. In the core of a quiescent equatorial streamer, oxygen and other high-FIP elements are depleted by an order of magnitude compared with photospheric abundances, while they are depleted by only a factor of 3 along the edges of the streamer. The abundances along the edges of the streamer (‘legs’) resemble elemental abundances measured in the slow solar wind, supporting the identification of streamers as the source of that wind component.  相似文献   

2.
Using spectra obtained from the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) spectrograph on the spacecraft SOHO (Solar and Heliospheric Observatory), we investigate the height dependence of electron density, temperature and abundance anomalies in the solar atmosphere. In particular, we present the behaviour of the solar FIP effect (the abundance enhancement of elements with first ionization potential < 10 eV in the corona with respect to photospheric values) with height above an active region observed at the solar limb, with emphasis on the so-called transition region lines.  相似文献   

3.
In this paper we use the observations of solar wind helium ions made by the Ion Composition Instrument (ICI) on the ISEE-3/ICE spacecraft to study the variation of helium abundance in the solar wind and to arrive at an average value of that quantity for the period August 1978 to December 1982. The abundance varies in a similar way to that observed in the previous solar cycle, but more detailed dependence on velocity and solar cycle epoch is observed. The long-term average helium abundance is used in conjunction with long term abundances of 3He, O, Ne, Si, and Fe, measured with respect to helium using the same instrument, to compile abundances with respect to hydrogen which can be reliably compared with solar system abundances. With the extended data set we are able to show Si and Fe to be overabundant by a factor of three with respect to solar system abundances and He underabundant by a factor of two.  相似文献   

4.
The intensities of far ultraviolet emission lines from the solar corona are analyzed to determine relative coronal abundances for oxygen, silicon, and iron. Dielectronic recombination is included in the formulation of ionization equilibrium. Observations of solar radio emission are used to obtain abundances relative to hydrogen. The absolute coronal abundances appear to be in agreement with their respective photospheric values. General properties of the structure of the chromosphere and corona are deduced from the analysis of observed emission in the ultraviolet and radio wavelength regions.  相似文献   

5.
Differential energy spectra of low abundant elements between silicon and iron of energetic solar particles (SEP) in the August 4, 1972 event were measured in the energy region of 10 to 40 MeV amu–1 using rocket-borne Lexan detectors. The relative abundances of elements were determined and abundance enhancements, i.e., SEP/photospheric ratios, and their energy dependence were derived in 10–40 MeV amu–1 interval. It is found that there are four types of abundance enhancements as a function of energy as follows: (a) silicon, iron, and calcium show fairly strong energy dependence which decreases with increasing energy and at 20–40 MeV amu–1 reaches photospheric values; (b) in case of sulphur enhancement factors are independent of energy and the values are close to unity; (c) argon shows energy independent enhancements of about 3 to 4 in 10–40 MeV amu–1; (d) titanium and chromium show weakly energy-dependent, but very high abundance enhancement factor of about 10 to 40. These features are to be understood in terms of the atomic properties of these elements and on the physical conditions in the accelerating region. These are important not only for solar phenomena but also to gain insight into the abundance enhancements of cosmic-ray heavy nuclei.on leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

6.
From data collected with the MTOF sensor of the CELIAS instrument on board the SOHO spacecraft we derived the elemental abundance ratios for Si/O and Fe/O in the solar wind with high time resolution. Since Si and Fe are elements with a low first ionization potential (FIP) and oxygen is a high FIP element, these abundance ratios are valuable diagnostic tools for the study of the FIP fractionation process. The abundance ratios we find for slow and fast solar wind are commensurate with published values for interstream and coronal hole type solar wind. Between these two extreme cases of solar wind flow we find a continuous decrease of the abundance ratios for increasing solar wind speed, from a high value indicative of solar wind originating from the streamer belt to low values associated with flow from coronal holes.  相似文献   

7.
High resolution coudé spectra in the blue and violet spectral regions have been obtained for five G dwarfs. Model atmospheres and spectrum synthesis of selected iron lines have been performed. Thegf values as well as other atomic parameters used in this analysis were previously tested by means of a solar model and the UtrechtSolar Atlas.Revised iron abundances have been derived. Some tentative evidence is presented that these abundances are related with the Wilson-Bappu width of Caii emissions.Based on observations obtained at the Observatoire de Haute Provence  相似文献   

8.
Heavy-element abundance gradients derived from type II planetary nebulae (PN) are studied for the elements neon, argon, and chlorine. As in the case of helium, oxygen, sulphur, and probably carbon and nitrogen, the abundance of these elements relative to hydrogen present measurable radial gradients across the galactic disk.  相似文献   

9.
NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low‐energy wind, coronal hole high‐energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5–6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.  相似文献   

10.
The X-ray Solar Monitor (XSM) on the Indian lunar mission Chandrayaan-1 was flown to complement lunar elemental abundance studies by the X-ray fluorescence experiment C1XS. XSM measured the ≈?1.8?–?20 keV solar X-ray spectrum during its nine months of operation in lunar orbit. The soft X-ray spectra can be used to estimate absolute coronal abundances using intensities of emission-line complexes and the plasma temperature derived from the continuum. The best estimates are obtained from the brightest flare observed by XSM: a C2.8-class flare. The well-known first-ionization potential (FIP) effect is observed; abundances are enhanced for the low-FIP elements Fe, Ca, and Si, while the intermediate-FIP element S shows values close to the photospheric abundance. The derived coronal abundances show a quasi-mass-dependent pattern of fractionation.  相似文献   

11.
Summary The basic scheme of nucleosynthesis (building of heavy elements from light ones) has held up very well since it was first proposed more than 30 years ago by E.M. Burbidge, G.R. Burbidge, A.G.W. Cameron, W.A. Fowler, and F. Hoyle. Significant advances in the intervening years include (a) observations of elemental and a few isotopic ratios in many more extrasolar-system sites, including metal-poor dwarf irregular galaxies, where very little has happened, and supernovae and their remnants, where a great deal has happened, (b) recognition of the early universe as good for making all the elements up to helium, (c) resolution of heavy element burning in stars into separate carbon, neon, oxygen, and silicon burning, with fine tuning of the resulting abundances by explosive nucleosynthesis in outgoing supernova shock waves, (d) clarification of the role of Type I supernovae, (e) concordance between elements produced in short-lived and long-lived stars with those that increased quickly and slowly over the history of the galaxy, and (f) calibration of calculations of the evolution and explosion of massive stars against the detailed observations of SN 1987A. The discussion presupposes a reader (a) with some prior knowledge of astronomy at the level of recognizing what is meant by an A star and an AGB star and (b) with at least a mild interest in how we got to where we currently are.  相似文献   

12.
We analyze the temperature dependence of the abundances of the chemical elements Si, Ca, Cr, and Fe in the atmospheres of normal, metallic-line (Am), magnetic peculiar (Ap), and pulsating magnetic peculiar (roAp) stars in the range 6000–15000 K. The Cr and Fe abundances in the atmospheres of Ap stars increase rapidly as the temperature rises from 6000 to 9000–10000 K. Subsequently, the Cr abundance decreases to values that exceed the solar abundance by an order of magnitude, while the Fe abundance remains enhanced by approximately +1.0 dex compared to the solar value. The temperature dependence of the abundances of these elements in the atmospheres of normal and Am stars is similar in shape, but its maximum is several orders of magnitude lower than that observed for Ap stars. In the range 6000–9500 K, the observed temperature dependences for Ap stars are satisfactorily described in terms of element diffusion under the combined action of gravitational settling and radiative acceleration. It may well be that diffusion also takes place in the atmospheres of normal stars, but its efficiency is very low due to the presence of microturbulence. We show that the magnetic field has virtually no effect on the Cr and Fe diffusion in Ap stars in the range of effective temperatures 6000–9500 K. The Ca abundance and its variation in the atmospheres of Ap stars can also be explained in terms of the diffusion model if we assume the existence of a stellar wind with a variable moderate rate of ~(2–4) × 10? 15M yr?1.  相似文献   

13.
Recent advances in wide-angle imaging by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and more recently by the Heliospheric Imagers (HI) aboard NASA’s Solar TErrestrial RElations Observatory (STEREO), have enabled solar wind transients to be imaged and tracked from the Sun to 1 AU and beyond. In this paper we consider two of the techniques that have been used to determine the propagation characteristics of solar wind transients based on single-spacecraft observations, in particular propagation direction and radial speed. These techniques usually assume that the observing spacecraft remains stationary for the duration of observation of the solar wind transient. We determine the inaccuracy introduced by this assumption for the two STEREO spacecraft and find that it can be significant, and it can lead to an overestimation of the transient velocity as seen from STEREO-A and an underestimation as seen by STEREO-B. This has implications for the prediction or solar wind transients at 1 AU and hence is important for the study of space weather.  相似文献   

14.
We present a measurement of the abundance of Fe relative to H in the solar corona using a technique that differs from previous spectroscopic and solar wind measurements. Our method combines EUV line data from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory with thermal bremsstrahlung radio data from the VLA. The coronal Fe abundance is derived by equating the thermal bremsstrahlung radio emission calculated from the EUV Fe line data to that observed with the VLA, treating the Fe/H abundance as the sole unknown. We apply this technique to a compact cool active region and find Fe&solm0;H=1.56x10-4, or about 4 times its value in the solar photosphere. Uncertainties in the CDS radiometric calibration, the VLA intensity measurements, the atomic parameters, and the assumptions made in the spectral analysis yield net uncertainties of approximately 20%. This result implies that low first ionization potential elements such as Fe are enhanced in the solar corona relative to photospheric values.  相似文献   

15.
Based on our spectrophotometric observations, we have studied the envelope of the HeN Nova Mon 2012. The abundances of some chemical elements in the envelope and its mass have been estimated. Our results show that the helium, nitrogen, oxygen, and neon abundances in the Nova envelope exceed the solar ones by a factor of 1.5, 33, 9, and 95, respectively. The envelope mass has been found to be 2.3 × 10?4 M .  相似文献   

16.
The abundances of two chemical elements of the iron group, viz., Cr and Ti, were determined by their high-resolution spectra for 22 A, F, and G supergiants in the solar neighborhood (within 700 pc). The titanium and chromium abundances were obtained using the Cr II and Ti II lines. The average chromium abundance of log?(Cr) = 5.70 ± 0.13 within the error limit corresponds to the solar abundance of log?(Cr) = 5.64. The average titanium abundance of log?(Ti) = 4.89 ± 0.10 within the error limit is very close to the solar abundance of log?(Ti) = 4.95. The average Cr and Ti abundances may be indicative of the fact that the average metallicity of young closely located stars is identical to that of the Sun.  相似文献   

17.
Helium and neon distributions are reported for a variety of Stardust comet 81P/Wild 2 samples, including particle tracks and terminal particles, cell surface and subsurface slices from the comet coma and interstellar particle collection trays, and numerous small aerogel blocks extracted from comet cells C2044 and C2086. Discussions and conclusions in several abstracts published during the course of the investigation are included, along with the relevant data. Measured isotope ratios span a broad range, implying a similar range for noble gas carriers in the Wild 2 coma. The meteoritic phase Q‐20Ne/22Ne ratio was observed in several samples. Some of these, and others, exhibit 21Ne excesses too large for attribution to spallation by galactic cosmic ray irradiation, suggesting exposure to a solar proton flux greatly enhanced above current levels in an early near‐Sun environment. Still others display evidence for a solar wind component, particularly one C2086 block with large abundances of isotopically solar‐like helium and neon. Eighty‐nine small aerogel samples were cut from depths up to several millimeters below the cell C2044 surface and several millimeters away from the axis of major track T41. A fraction of these yielded measurable and variable helium and neon abundances and isotope ratios, although none contained visible tracks or carrier particle fragments and their locations were beyond estimated penetration ranges for small particles or ions incident on the cell surface, or for lateral ejecta from T41. Finding plausible emplacement mechanisms and sources for these gases is a significant challenge raised by this study.  相似文献   

18.
We make new non-local thermodynamic equilibrium calculations to deduce the abundances of neon from visible-region echelle spectra of selected Ne  i lines in seven normal stars and 20 HgMn stars. We find that the best strong blend-free Ne line that can be used at the lower end of the effective temperature T eff range is λ 6402, although several other potentially useful Ne  i lines are found in the red region of the spectra of these stars. The mean neon abundance in the normal stars (log  A =8.10) is in excellent agreement with the standard abundance of neon (8.08). However, in HgMn stars neon is almost universally underabundant, ranging from marginal deficits of 0.1–0.3 dex to underabundances of an order of magnitude or more. In many cases, the lines are so weak that only upper limits can be established. The most extreme example found is υ Her with an underabundance of at least 1.5 dex. These underabundances are qualitatively expected from radiative acceleration calculations, which show that Ne has a very small radiative acceleration in the photosphere, and that it is expected to undergo gravitational settling if the mixing processes are sufficiently weak and there is no strong stellar wind. According to theoretical predictions , the low Ne abundances place an important constraint on the intensity of such stellar winds, which must be less than 10−14 M yr−1 if they are non-turbulent.  相似文献   

19.
Solar abundances are important to planetary science since the prevalent model assumes that the composition of the solar photosphere is that of the solar nebula from which planetary materials formed. Thus, solar abundances are a baseline for planetary science. Previously, solar abundances have only been available through spectroscopy or by proxy (CI). The Genesis spacecraft collected and returned samples of the solar wind for laboratory analyses. Elemental and isotopic abundances in solar wind from Genesis samples have been successfully measured despite the crash of the re‐entry capsule. Here we present science rationales for a set of 12 important (and feasible postcrash) Science and Measurement Objectives as goals for the future (Table 1). We also review progress in Genesis sample analyses since the last major review (Burnett 2013 ). Considerable progress has been made toward understanding elemental fractionation during the extraction of the solar wind from the photosphere, a necessary step in determining true solar abundances from solar wind composition. The suitability of Genesis collectors for specific analyses is also assessed. Thus far, the prevalent model remains viable despite large isotopic variations in a number of volatile elements, but its validity and limitations can be further checked by several Objectives.  相似文献   

20.
In contrast to earth, the atmosphere of the moon is exceedingly tenuous and appears to consist mainly of noble gases. The solar wind impinges on the lunar surface, supplying detectable amounts of helium, neon and 36Ar. Influxes of solar wind protons and carbon and nitrogen ions are significant, but atmospheric gases containing these elements have not been positively identified. Radiogenic 40Ar and 222Rn produced within the moon have been detected. The present rate of effusion of argon from the moon accounts for about 0.4% of the total production of 40Ar due to decay of 40K if the average abundance of potassium in the moon is 1000 ppm. Lack of weathering processes in the regolith suggests that most of the atmospheric 40Ar originates deep in the lunar interior, perhaps in a partially molten core. If so, other gases may be vented along with the argon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号