首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 196 毫秒
1.
We report here our experiences from using easily acquired web-cam components for collaborative ventures in the Earth sciences. We have used a variety of hardware and different software. We demonstrate from various locations in the U.S.A. the feasibility of using web-cam in multitudinous activities, relevant for conducting research and knowledge dissemination. We summarize the quality of the connections from the various combinations of communicating parties. Today, web-cams can be utilized as an economical and viable means of point-to-point communication in the Earth science community. Greater bandwidth is sorely needed for activities such as multi-party conferencing on the present internet network. We propose that web-cam can be readily deployed as a web-service for facilitating collaborative research over the GRID infrastructure, using the middleware Narada-Brokering. Web-cam will play an important role in the emerging field of geoinformatics.  相似文献   

2.
    
Amira is a powerful three-dimensional visualization package that has been employed recently by the science and engineering communities to gain insight into their data. We discuss a new paradigm for the use of Amira in the Earth sciences that relies on the client-server paradigm. We have developed a module called WEB-IS2, which provides web-based access to Amira. This tool allows Earth scientists to manipulate Amira controls remotely and to analyze, render and view large datasets through the Internet without regard for time or location. This could have important ramifications for GRID computing.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s10069-003-0013-y  相似文献   

3.
    
Amira is a powerful three-dimensional visualization package that has been employed recently by the science and engineering communities to gain insight into their data. We discuss a new paradigm for the use of Amira in the Earth sciences that relies on the client-server paradigm. We have developed a module called WEB-IS2, which provides web-based access to Amira. This tool allows Earth scientists to manipulate Amira controls remotely and to analyze, render and view large datasets through the Internet without regard for time or location. This could have important ramifications for GRID computing.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s10069-003-0013-y  相似文献   

4.
Wang Pinxian 《地球科学进展》2014,29(11):1277-1279
Earth system science should not be understood as an all embracing term that combines various disciplines studying the planet Earth. Rather, it is a new approach to consider interaction between its various subsystems, and seeks to integrate various research fields to understand the Earth as a system. Earth system science has developed from global changes studies, then extended into the deep geological past and now is facing a new challenge connecting the surface processes with those in the Earth’s interior.  相似文献   

5.
Reuse of software and related components can contribute to the development of systems for processing scientific data. The reuse of components, which can be from any stage of the development life cycle, provides opportunities to realize benefits such as reduced costs and learning curves. However, the reuse of existing components also comes with risks that must be recognized in order to be mitigated. The National Aeronautics and Space Administration established the Earth Science Data Systems Software Reuse Working Group to support software reuse among members of the community of Earth science data systems developers. This is done through a variety of activities, including research, education, and public outreach, which are conducted to help encourage and enable reuse within the community. Considerations for realizing the benefits of software reuse and minimizing risks are presented along with recent working group activities to improve reuse capabilities for the community of Earth science data systems developers.  相似文献   

6.
Web interfaces have made remote sensing image resources more accessible and interactive. However, many web-based and Digital Earth opportunities for remote sensing have not yet been fully explored and could greatly facilitate scientific collaboration. In many cases, these resources can augment traditional proprietary software packages, which can have limited flexibility, spatiotemporal controls, and data synthesis abilities. In this paper, we discuss how web services and Google Earth were used for time-critical geovisualizations of the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Deepwater Horizon oil spill imaging campaign. In particular, we describe how (1) AVIRIS Google Earth products were used to visualize the spatial and temporal characteristics of the campaign’s image acquisitions, critically needed for flight planning, (2) the Google Fusion Table cloud-based service was applied to create a highly-interactive image archive and mapping display, and (3) the Google Fusion Table API was utilized to create a flexible PHP-based interface for metadata creation and as the basis for an interactive data catalog. Although there are other possible software and programming approaches to these activities, we highlight freely-accessible and flexible solutions and bring attention to the newly introduced Google Fusion Tables as a collaborative scientific platform.  相似文献   

7.
The paper offers a critical intervention into the debates on research impact, theorising the potential of underpinning research agendas by ethics of care. We explore how a range of vectors of care, both intimate and distant, emerged in collaborative activities between researchers based in the UK and community youth workers and teenage female carers in Slovakia, leading to a series of (un)expected outcomes. We argue that while all research impacts cannot be planned in advance, an ethics of care embedded in relationships within and beyond research settings may form conditions in which outcomes exceeding the initial expectations can be anticipated. To achieve this, we argue for questioning the distinctions between academic and non-academic collaborators, legitimising diverse forms of knowledge, action and impact in institutional policies, and for conceiving research projects from the beginning as “more-than-research” avenues.  相似文献   

8.
化学地球动力学   总被引:6,自引:0,他引:6  
化学地球动力学是地球化学的分支学科,它在研究地球内部化学组成和演化时,把地球视为一个完整的动力学系统而不是彼此孤立的地质集合体。它通过研究地球各层圈内部的化学结构和过程以及不同层圈之间的化学相互作用,从而从本质上研究和认识发生在地球内部的各种地质作用。简述了化学地球动力学研究在固体地球科学中的重要性,概括了化学地球动力学的特点和突出成果,分析了化学地球动力学研究的科学意义,并对在中国开展壳幔相互作用的化学地球动力学研究提出了建议。  相似文献   

9.
Collaborative eScience research teams are impeded by difficulties defining problems that provide research opportunities for all participants. Problem formulation occurs early in the collaboration process when the demand for ideas is high. However, cross-disciplinary linkages and integrated conceptual frameworks from which strong interdisciplinary ideas emerge do not evolve until later. The process of co-creating interdisciplinary research ideas is fundamentally a learning problem; participants from different disciplines must learn enough about each other’s research interests to construct an integrated conceptual framework from which joint problems of interest can be created. However, participants rarely have the conceptual background needed to easily understand research topics in other disciplines; hence methods for enabling rapid learning in these situations are needed. Team interactions that more effectively generate interdisciplinary ideas can be enabled based on a better understanding the process of cross-disciplinary, collaborative learning. This article postulates several models of collaborative learning in these settings and discusses the implications for orchestrating team activities to achieve better outcomes.  相似文献   

10.
作为生物矿物一种十分重要的类型,生物成因硫化物矿物形成于多种海水和淡水环境中.它们是自然界硫和金属元素循环中的关键一环,并有可能在地球早期生命起源中扮演了重要的角色.现代环境中形成的生物成因硫化物矿物与多种生命过程有着十分密切的联系,微生物和大型生物均可直接或间接地影响生物成因硫化物矿物的形成.重点从生物成因硫化物矿物类型、参与生物矿化的有机体、生物成因硫化物矿物形成机制以及硫化物矿物与生命起源的关系等几个方面综述了生物成因硫化物矿物研究的最新进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号