首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 1 毫秒
1.
孟庆苗  李中让  李玉山 《海洋学报》2010,32(10):6847-6850
利用薄膜模型研究Barriola-Vilenkin黑洞的热辐射,得到了黑洞的热辐射满足广义Stefan-Boltzmann定律的结论,导出的广义Stefan-Boltzmann系数不再是一个恒量,当截断距离以及薄膜厚度取定后,它是一个与黑洞视界附近的时空度规以及辐射粒子的径向平均泻流速率有关的比例系数.得到的Barriola-Vilenkin黑洞视界附近Dirac场的辐射能通量与薄层膜内辐射粒子的径向平均泻流速率成正比,与黑洞的质量平方成反比.  相似文献   

2.
A theory of (1+1)-dimensional gravity is constructed on the basis of the teleparallel equivalent of general relativity. The fundamental field variables are the tetrad fields eiμ and the gravity is attributed to the torsion. A dilatonic spherically symmetric exact solution of the gravitational field equations characterized by two parameters M and Q is derived. The energy associated with this solution is calculated using the two-dimensional gravitational energy--momentum formula.  相似文献   

3.
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation(SODA), the wind-induced near-inertial energy flux(NIEF) in the mixed layer of the South China Sea(SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to September. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 m W/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Ni?o3.4 index are negatively correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号