首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
2.
Summary. Following the classic work of Eshelby, the slip and stress distributions due to an elliptical plane shear crack are evaluated. The relation between average (or maximum) slip on the crack and the (constant) static stress drop, for faults of different aspect ratios, is found. The slip vector is not parallel to the applied stress but makes a small angle to it, except when the stress is applied along the major or minor axis of the ellipse. The stress -distribution around the crack shows that in addition to the expected stress concentration along the crack edge, there are broad regions of stress increase off the crack plane for circular and elliptical cracks, similar to those known to exist for in-plane but not for antiplane shear cracks. Whether the stress- intensity factor at the end of one axis is greater or less than that at the end of the other axis ( ka ≶ kb ), depends on the condition: √ b/a ≶ (1 − v ) where a and b are the semi-axes of the ellipse, ka and kb are the stress-intensity factors at the end of the a- and b -axes and v is Poisson's ratio. The total stress-intensity factor varies smoothly along the edge of the ellipse from one axis to the other and it is found that this variation is rather small.  相似文献   

3.
4.
Okada (1992) provided expressions for the displacement and strain fields due to a finite rectangular source in an elastic, homogeneous and isotropic half-space. Starting with these results, we applied the correspondence principle of linear viscoelasticity to derive the quasi-static displacement, strain and stress fields in a viscoelastic, homogeneous and isotropic half-space. We assume that the medium deforms viscoelastically with respect to both the shear and the normal stresses but keeps a constant bulk modulus; in particular, the shear modulus relaxes as Maxwell fluid. We presented the viscoelastic effect on displacement, displacement gradient and stress fields, for a choice of parameter values. The viscoelastic effect due to the sudden dislocation reaches a limit value after about 10 times the Maxwell time. The expressions obtained here provide tools for the study of viscoelastic relaxation of lithosphere associated with seismic and volcanic phenomena.  相似文献   

5.
6.
Dynamic stress variations due to shear faults in a plane-layered medium   总被引:11,自引:0,他引:11  
A complete set of expressions is presented for the computation of elastic dynamic stress in plane-layered media. We use a discrete-wavenumber reflectivity method to compute the stress field radiated by arbitrary moment-tensor sources. The expressions derived here represent an interesting tool for both-the observational and theoretical analysis of dynamic stress changes associated with earthquake phenomena. Dynamic stress changes associated with a strike-slip fault having unilateral rupture are shown. This modelling, which is similar to the 1992 Landers California earthquake, illustrates the effects of distance, directivity and depth on transient stress changes.  相似文献   

7.
8.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

9.
10.
Summary. Most crustal earthquakes of the world are observed to occur within a seismogenic layer which extends from the Earth's surface to a depth of a few tens of kilometres at most. A model is proposed in which the shear zone along a transcurrent plate margin is represented as a viscoelastic medium with depth-dependent power-law rheology. A frictional resistance linearly increasing with depth is assumed on a vertical transcurrent fault within the shear zone. Such a model is able to reproduce a continuous transition from the brittle behaviour of the upper crust to the ductile behaviour at depth. Assuming that the shear zone is subjected to a constant strain rate from the opposite motions of the two adjacent plates, it is found that there exists a maximum depth H below which tectonic stress can never reach the frictional threshold: this may be identified as the maximum depth of earthquake nucleation. The value of H is consistent with observations for plausible values of the model parameters. The stress evolution in the shear zone is calculated in the linear approximation of the constitutive equation. A change in rigidity with depth, which is also introduced in the model, may reproduce the high vertical gradient of shear stress, which has been measured across the San Andreas fault, and the fact that most earthquakes are nucleated at some depth in the seismogenic layer. A crack which drops the ambient stress to the dynamic frictional level is then introduced in the model. To this aim, a crack solution is employed without a stress singularity at its edges, which is compatible with a frictional stress threshold criterion for fracture. A constraint on the vertical friction gradient is obtained if such cracks are assumed to be entirely confined within the seismogenic layer.  相似文献   

11.
12.
Closed-form analytical expressions for the displacements and stresses induced by a single force of arbitrary orientation located in an elastic half-space in welded contact with another elastic half-space are obtained. These expressions are valid for arbitrary values of the Poisson's ratio and for arbitrary source and observer locations. The final results are given in a form that makes numerical computation straightforward and accurate.  相似文献   

13.
14.
A data space approach to magnetotelluric (MT) inversion reduces the size of the system of equations that must be solved from M × M , as required for a model space approach, to only N × N , where M is the number of model parameter and N is the number of data. This reduction makes 3-D MT inversion on a personal computer possible for modest values of M and N . However, the need to store the N × M sensitivity matrix J remains a serious limitation. Here, we consider application of conjugate gradient (CG) methods to solve the system of data space Gauss–Newton equations. With this approach J is not explicitly formed and stored, but instead the product of J with an arbitrary vector is computed by solving one forward problem. As a test of this data space conjugate gradient (DCG) algorithm, we consider the 2-D MT inverse problem. Computational efficiency is assessed and compared to the data space Occam's (DASOCC) inversion by counting the number of forward modelling calls. Experiments with synthetic data show that although DCG requires significantly less memory, it generally requires more forward problem solutions than a scheme such as DASOCC, which is based on a full computation of J .  相似文献   

15.
16.
17.
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号