首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 1960, geomorphic effectiveness has been quantified by analytically combining measures of the frequency and the magnitude of geomorphic processes, most often for the case of sediment yield in rivers via the calculation of effective discharge, Qeff. Here we leverage the Qeff analysis approach to develop an alternative metric, the functional‐equivalent discharge Qfed, which is the discharge that will reproduce the magnitude of the sediment load generated by the full hydrologic distribution. Qfed is intended to be a more representative metric of hydrologic variability than Qeff: whereas Qeff provides a measure of the effectiveness of individual flow rates, Qfed incorporates a measure of the average effectiveness of the entire flow distribution. We develop an analytical approximation of Qfed based on relatively few parameters, apply the approach to a set of suspended sediment load data and describe how Qfed varies broadly with sediment and hydrologic conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Lahars (volcanic debris flows) have been responsible for 40% of all volcanic fatalities over the past century. Mount Semeru (East Java, Indonesia) is a persistently active composite volcano that threatens approximately one million people with its lahars and pyroclastic flows. Despite their regularity, the behaviour and the propagation of these rain‐triggered lahars are poorly understood. In situ samples were taken from lahars in motion at two sites in the Curah Lengkong River, on the southeast flank of Semeru, providing estimates of the particle concentration, grain size spectrum, grain density and composition. This enables us to identify flow sediment from three categories of lahars: (a) hyperconcentrated flow, (b) non‐cohesive, clast‐ and matrix‐supported debris flow, and (c) muddy flood. To understand hyperconcentrated flow sediment transport processes, it is more appropriate to sample the active flows than the post‐event lahar deposits because in situ sampling retains the full spectrum of the grain‐size distribution. Rheometrical tests on materials sampled from moving hyperconcentrated flows were carried out using a laboratory vane rheometer. Despite technical difficulties, results obtained on the <63, <180, and <400 µm fractions of the sampled sediment, suggest a purely frictional behaviour. Importantly, and contrary to previous experiments conducted with monodisperse suspensions, our results do not show any transition towards a viscous behaviour for high shear rates. These data provide important constraints for future physical and numerical modelling of lahar flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Quantifying the removal of co‐seismic landslide material after a large‐magnitude earthquake is central to our understanding of geomorphic recovery from seismic events and the topographic evolution of tectonically active mountain ranges. In order to gain more insight into the fluvial erosion response to co‐seismic landslides, we focus on the sediment fluxes of rivers flowing through the rupture zone of the 2008 Mw 7.9 Wenchuan earthquake in the Longmen Shan of the eastern Tibetan Plateau. Over the post‐seismic period of 2008–2013, we annually collected river sediment samples (0.25–1 mm) at 19 locations and measured the concentration of cosmogenic 10Be in quartz. When compared with published pre‐earthquake data, the 10Be concentrations declined dramatically after the earthquake at all sampling sites, but with significant spatial differences in the amplitude of this decrease, and were starting to increase toward pre‐earthquake level in several basins over the 5‐year survey. Our analysis shows that the amplitude of 10Be decrease is controlled by the amount of landslides directly connected to the river network. Calculations based on 10Be mixing budgets indicate that the sediment flux of the 0.25–1 mm size fraction increased up to sixfold following the Wenchuan earthquake. Our results also suggest that fluvial erosion became supply limited shortly after the earthquake, and predict that it could take a few years to several decades for fluvial sediment fluxes to go back to pre‐earthquake characteristics, depending on catchment properties. We also estimate that it will take at least decades and possibly up to thousands of years to remove the co‐seismic landslide materials from the catchments in the Longmen Shan. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The spatial scale effect on sediment concentration in runoff has received little attention despite numerous studies on sediment yield or sediment delivery ratio in the context of multiple spatial scales. We have addressed this issue for hilly areas of the Loess Plateau, north China where fluvial processes are mainly dominated by hyperconcentrated flows. The data on 717 flow events observed at 17 gauging stations and two runoff experimental plots, all located in the 3906 km2 Dalihe watershed, are presented. The combination of the downstream scour of hyperconcentrated flows and the downstream dilution, which is mainly caused by the base flow and is strengthened as a result of the strong patchy storms, determines the spatial change of sediment concentration in runoff during flood events. At the watershed scale, the scouring effect takes predominance first but is subordinate to the downstream dilution with a further increase in spatial scale. As a result, the event mean sediment concentration first increases following a power function with drainage basin area and then declines at the drainage basin area of about 700 km2. The power function in combination with the proportional model of the runoff‐sediment yield relationship we proposed before was used to establish the sediment‐yield model, which is neither the physical‐based model nor the regression model. This model, with only two variables (runoff depth and drainage basin area) and two parameters, can provide fairly accurate prediction of event sediment yield with model efficiency over 0·95 if small events with runoff depth lower than 1 mm are excluded. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Suspended sediment is a major source of pollution in irrigation‐dominated watersheds. However, little is known about the process and mechanisms of suspended sediment transport in drain channels directly connected to agricultural fields. This paper explains sediment dynamics using averaged 5 min flow discharge Q (m3 s?1) and suspended sediment concentration C (mg l?1) collected during one crop season in a small catchment containing a first‐order drain channel and its connected six agricultural fields within the Salton Sea watershed. The statistical properties and average trends of Q and C were investigated for both early (i.e. November) and late (i.e. January) stages of a crop season. Further in‐depth analysis on sediment dynamics was performed by selecting two typical single‐field irrigation events and two multiple‐field irrigation events. For each set of irrigation events, the process of suspended sediment transport was revealed by examining hydrograph and sediment graph responses. The mechanisms underlying suspended sediment transport were investigated by analysing the types of corresponding hysteresis loop. Finally, sediment rating curves for both hourly and daily data at early and late stages and for the entire crop season were established to seek possible sediment‐transport predictive model(s). The study suggests that the complicated processes of suspended sediment transport in irrigation‐dominated watersheds require stochastic rather than deterministic forecasting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The study of bedload transport processes is constrained by an inability to monitor the mass, volume and grain size distribution of sediment in transport at high temporal frequencies. Building upon a previously published design, we have integrated a high‐resolution (1392 × 1024 pixels) video camera with a light table to continuously capture images of 2–181 mm material exiting a flume. The images are continuously recorded at a rate of 15 to 20 frames per second and are post‐processed using LabView(?) software, yielding continuous grain‐size‐specific transport information on a per second basis. The video capture rate is sufficient to record multiple images of each grain leaving the flume so that particle velocities can be measured automatically. No manual image processing is required. After calibration the method is accurate and precise for sediment in the 2 mm through to 45 mm grain size classes compared with other means of measuring bedload. Based on a set of validation samples, no statistically significant difference existed between the D10, D16, D25, D50, D75, D84, D90 and D95 determined by sieving captured samples and the Di values determined with the system. On average the system overpredicted transport by 4 per cent (n = 206, SD = 42%). This error can be corrected easily by simply weighing the mass of sediment that leaves the flume. The technology is relatively inexpensive and provides high‐resolution data on coarse sediment transport out of a flume. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Floods in small mountainous watersheds cover a wide spectrum of flow. They can range from clear water flows and hyperconcentrated flows to debris floods and debris flows, and calculation of the peak discharge is crucial for predicting and mitigating such hazards. To determine the optimal approach for discharge estimation, this study compared water flow monitoring hydrographs to investigate the performance of five hydrological models that incorporate different runoff yields and influx calculation methods. Two of the models performed well in simulating the peak discharge, peak time, and total flow volume of the water flood. The ratio (γ) of the monitored debris flood discharge (Qd) to the simulated water flow discharge (Qw) was investigated. Qualitatively, γ initially increased with Qw but then decreased when Qw exceeded a certain threshold, which corresponded to rainfall of 95 and 120 mm in a 6- and 24-h event with a normal distribution of precipitation, respectively. The decrease might be attributable to a threshold of sediment availability being reached, beyond which increased flow rate is not matched by increased sediment input in the large watershed. Uncertainty of hydrological calculation was evaluated by dividing the catchment into sub-basins and adopting different rainfall time steps as input. The efficiency of using a distributed simulation exhibited marginal improvement potential compared with a lumped simulation. Conversely, the rainfall time step input significantly affected the simulation results by delaying the peak time and decreasing the peak discharge. This research demonstrates the applicability of a discharge estimation method that combines a hydrological water flow simulation and an estimation of γ. The results were verified on the basis of monitored flow densities and videos obtained in two watersheds with areas of 2.34 and 32.4 km2.  相似文献   

14.
Hyperconcentrated flows as influenced by coupled wind-water processes   总被引:4,自引:0,他引:4  
Hyperconcentrated flow is a natural phenomenon, which is widely observed on the Loess Plateau of China[1,2]. So far, much research has been done with hyperconcentrated flows in China[1―7], although hy-perconcentrated flows are also observed in many riv-ers in other countries[8―10]. In the monograph edited by Chien[11], hyperconcnetrated flows were studied in depth, involving the physical properties, resistance, sediment-carry behavior and channel-forming pro- cesses. Wang and Chien el al.[…  相似文献   

15.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
There is considerable interest in large‐scale spatial patterns of sediment transport in catchments, and this topic is often approached using terrain‐based modelling. In such models topography influences the discharge of overland flow and its sediment transport capacity. The sediment transport capacity of overland flow is commonly expressed as a power function of slope and discharge (i.e. qs=k1qβSγ). The relationship between discharge and contributing area can also be expressed as a power function. Several reviews reveal a limited range of values for the two exponents β and γ. In this paper we examine the sensitivity of catchment‐scale patterns of sediment delivery to valley floors to a range of sediment transport capacity and hillslope hydrology parameterizations, using two catchments on the southern tablelands of New South Wales. The results indicate that, over the limited range of β and γ identified within the literature, sediment deliveries to valley floors across the two catchments are similar for all but one of five sediment transport capacity relationships. The patterns are dominated by the trend in slope through each catchment. The sensitivity to hillslope hydrology of predicted sediment delivery patterns is strong in the catchment with systematic variation in unit hillslope area, and weak in the catchment for which there are no systematic trends in unit hillslope area. We believe there is less experimental evidence to restrict choice of hillslope hydrology parameters than there is for sediment transport capacity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

18.
Differences in the transport rate and size of bedload exist for varying levels of flow in coarse‐grained channels. For gravel‐bed rivers, at least two phases of bedload transport, with notably differing qualities, have been described in the literature. Phase I consists primarily of sand and small gravel moving at relatively low rates over a stable channel surface. Transport rates during Phase II are considerably greater than Phase I and more coarse grains are moved, including material from both the channel surface and subsurface. Transition from Phase I to Phase II indicates initiation and transport of grains comprising the coarse surface layer common in steep mountain channels. While the existence of different phases of transport is generally acknowledged, the threshold between them is often poorly defined. We present the results of the application of a piecewise regression analysis to data on bedload transport collected at 12 gravel‐bed channels in Colorado and Wyoming, USA. The piecewise regression recognizes the existence of different linear relationships over different ranges of discharge. The inflection, where the fitted functions intersect, is interpreted as the point of transition from Phase I to Phase II transport; this is termed breakpoint. A comparison of grain sizes moved during the two phases shows that coarse gravel is rarely trapped in the samplers during Phase I transport, indicating negligible movement of grains in this size range. Gravel larger than about D16 of the channel surface is more consistently trapped during Phase II transport. The persistence of coarse gravel in bedload samples provides good evidence that conditions suitable for coarse grain transport have been reached, even though the size of the sediment approaches the size limits of the sampler (76 mm in all cases). A relative breakpoint (Rbr) was defined by the ratio between the discharge at the breakpoint and the 1·5‐year flow (a surrogate for bankfull discharge) expressed as a percentage. The median value of Rbr was about 80 percent, suggesting that Phase II begins at about 80 percent of the bankfull discharge, though the observed values of Rbr ranged from about 60 to 100 percent. Variation in this value appears to be independent of drainage area, median grain size, sorting of bed materials, and channel gradient, at least for the range of parameters measured in 12 gravel‐bed channels. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes meandering alluvial rivers with mean annual suspended-sediment concentrations of more than 100 kgm?3 on the Loess Plateau, China, and explains their formation as caused by the effect of hyperconcentrated water flow. When the river is dominated by hyperconcentrated flow, the rate of energy expenditure required for sediment transport declines significantly. Accordingly, the river channel adjusts itself to a lower channel gradient by increasing the river length, resulting in a meandering channel. Since the stable transportation of sediment by hyperconcentrated flow is dependent on river channel boundary conditions, the latter play an important role in the formation of meanders of this kind. The paper also discusses the conditions for the discrimination of meandering and braided rivers in this area.  相似文献   

20.
Several methods were employed in the Ardennian rivers (Belgium) to determine the depth of the active layer mobilized during floods and to evaluate the bedload discharge associated with these events. The use of scour chains has shown that the depth of the active layer is systematically less than the b‐axis of the average particle size (D50) of the elements which compose the surface layer of the riffles. This indicates that only a partial transport exists during low magnitude floods. The bedload discharge has been evaluated by combining data obtained using the scour chains technique and the distance covered by tracers. Quantities of sediment transported during frequent floods are relatively low (0·02 t km–2) due to the armour layer which protects the subsurface material. These low values are also related to the fact that the distance calculated for mobilized bedload only applies to tracers fitted with PIT (passive integrated transponder)‐tags (diameter > 20 mm), whereas part of the bedload discharge is composed of sand and fine gravel transported over greater distances than the pebbles. The break‐up of the armour layer was observed only once, for a decennial discharge. During this event, the bedload discharge increased considerably (2 t km–2). The use of sediment traps, data from dredging and a Helley–Smith sampler confirm the low bedload transport in Ardennian rivers in comparison to the bedload transport in other geomorphological contexts. This difference is explained by the presence of an armoured layer but also by the imbricated structures of flat bed elements which increase the resistance to the flow. Finally, the use of the old iron industry wastes allowed to quantify the thickness of the bed reworked over the past centuries. In the Lembrée River, the river‐bed contains slag elements up to a depth of about 50 cm, indicating that exceptional floods may rework the bed to a considerable depth. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号