首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure‐from‐motion (SfM) photogrammetry is revolutionising the collection of detailed topographic data, but insight into geomorphological processes is currently restricted by our limited understanding of SfM survey uncertainties. Here, we present an approach that, for the first time, specifically accounts for the spatially variable precision inherent to photo‐based surveys, and enables confidence‐bounded quantification of 3D topographic change. The method uses novel 3D precision maps that describe the 3D photogrammetric and georeferencing uncertainty, and determines change through an adapted state‐of‐the‐art fully 3D point‐cloud comparison (M3C2), which is particularly valuable for complex topography. We introduce this method by: (1) using simulated UAV surveys, processed in photogrammetric software, to illustrate the spatial variability of precision and the relative influences of photogrammetric (e.g. image network geometry, tie point quality) and georeferencing (e.g. control measurement) considerations; (2) we then present a new Monte Carlo procedure for deriving this information using standard SfM software and integrate it into confidence‐bounded change detection; before (3) demonstrating geomorphological application in which we use benchmark TLS data for validation and then estimate sediment budgets through differencing annual SfM surveys of an eroding badland. We show how 3D precision maps enable more probable erosion patterns to be identified than existing analyses, and how a similar overall survey precision could have been achieved with direct survey georeferencing for camera position data with precision half as good as the GCPs'. Where precision is limited by weak georeferencing (e.g. camera positions with multi‐metre precision, such as from a consumer UAV), then overall survey precision can scale as n½ of the control precision (n = number of images). Our method also provides variance–covariance information for all parameters. Thus, we now open the door for SfM practitioners to use the comprehensive analyses that have underpinned rigorous photogrammetric approaches over the last half‐century. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Different high‐resolution techniques can be employed to obtain information about the three‐dimensional (3D) surface of glaciers. This is typically carried out using efficient, but also expensive and logistically demanding, light detection and ranging (LiDAR) technologies, such as airborne scanners and terrestrial laser scanners. Recent technological improvements in the field of image analysis and computer vision have prompted the development of a low‐cost photogrammetric approach, which is referred to as ‘structure‐from‐motion’ (SfM). Combined with dense image‐matching algorithms, this method has become competitive for the production of high‐quality 3D models. However, several issues typical of this approach should be considered for application in glacial environments. In particular, the surface morphology, the different substrata, the occurrence of sharp contrast from solar shadows and the variable distance from the camera positions can negatively affect the image texture, and reduce the possibility of obtaining a reliable point cloud from the images. The objective of this study is to test the structure‐from‐motion multi view stereo (SfM‐MVS) approach in a small debris‐covered glacier located in the eastern Italian Alps, using a consumer‐grade reflex camera and the computer vision‐based software PhotoScan. The quality of the 3D models produced by the SfM‐MVS process was assessed via the comparison with digital terrain models obtained from terrestrial laser scanning (TLS) surveys that were performed at the same epochs. The effect of different terrain gradients and different substrata (debris, snow and firn) was also evaluated in terms of the accuracy of the reconstruction by SfM‐MVS versus TLS. Our results show that the quality of this new photogrammetric approach is similar to the quality of TLS and that point cloud densities are comparable or even higher compared with TLS. However, special care should be taken while planning the SfM survey geometry, to optimize the 3D model quality and spatial coverage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Quantifying the extent of soil erosion at a fine spatial resolution can be time consuming and costly; however, proximal remote sensing approaches to collect topographic data present an emerging alternative for quantifying soil volumes lost via erosion. Herein we compare terrestrial laser scanning (TLS), and both unmanned aerial vehicle (UAV) and ground photography (GP) structure‐from‐motion (SfM) derived topography. We compare the cost‐effectiveness and accuracy of both SfM techniques to TLS for erosion gully surveying in upland landscapes, treating TLS as a benchmark. Further, we quantify volumetric soil loss estimates from upland gullies using digital surface models derived by each technique and subtracted from an interpolated pre‐erosion surface. Soil loss estimates from UAV and GP SfM reconstructions were comparable to those from TLS, whereby the slopes of the relationship between all three techniques were not significantly different from 1:1 line. Only for the TLS to GP comparison was the intercept significantly different from zero, showing that GP is more capable of measuring the volumes of very small erosion features. In terms of cost‐effectiveness in data collection and processing time, both UAV and GP were comparable with the TLS on a per‐site basis (13.4 and 8.2 person‐hours versus 13.4 for TLS); however, GP was less suitable for surveying larger areas (127 person‐hours per ha?1 versus 4.5 for UAV and 3.9 for TLS). Annual repeat surveys using GP were capable of detecting mean vertical erosion change on peaty soils. These first published estimates of whole gully erosion rates (0.077 m a?1) suggest that combined erosion rates on gully floors and walls are around three times the value of previous estimates, which largely characterize wind and rainsplash erosion of gully walls. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Drainage channels are an integral part of agricultural landscapes, and their impact on catchment hydrology is strongly recognized. In cultivated and urbanized floodplains, channels have always played a key role in flood protection, land reclamation, and irrigation. Bank erosion is a critical issue in channels. Neglecting this process, especially during flood events, can result in underestimation of the risk in flood‐prone areas. The main aim of this work is to consider a low‐cost methodology for the analysis of bank erosion in agricultural drainage networks, and in particular for the estimation of the volumes of eroded and deposited material. A case study located in the Veneto floodplain was selected. The research is based on high‐resolution topographic data obtained by an emerging low‐cost photogrammetric method (structure‐from‐motion or SfM), and results are compared to terrestrial laser scanning (TLS) data. For the SfM analysis, extensive photosets were obtained using two standalone reflex digital cameras and an iPhone5® built‐in camera. Three digital elevation models (DEMs) were extracted at the resolution of 0.1 m using SfM and were compared with the ones derived by TLS. Using the different DEMs, the eroded areas were then identified using a feature extraction technique based on the topographic parameter Roughness Index (RI). DEMs derived from SfM were effective for both detecting erosion areas and estimating quantitatively the deposition and erosion volumes. Our results underlined how smartphones with high‐resolution built‐in cameras can be competitive instruments for obtaining suitable data for topography analysis and Earth surface monitoring. This methodology could be potentially very useful for farmers and/or technicians for post‐event field surveys to support flood risk management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The availability of high‐resolution, multi‐temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three‐dimensional topographic point measurements acquired from structure‐from‐motion (SfM) photogrammetry have been shown to be highly accurate and cost‐effective compared to laser‐based alternatives in some environments. Use of consumer‐grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM‐ and LiDAR‐derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000 m3) on an unvegetated fluvial surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post‐processing techniques increased point density by 5–25% and decreased processing time by 10–30%. Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

6.
Stream bathymetry is a critical variable in a number of river science applications. In larger rivers, bathymetry can be measured with instruments such as sonar (single or multi‐beam), bathymetric airborne LiDAR (light detection and ranging), or acoustic Doppler current profilers. However, in smaller streams with depths less than 2 m, bathymetry is one of the more difficult variables to map at high‐resolution. Optical remote sensing techniques offer several potential solutions for collecting high‐resolution bathymetry. In this research, I focus on direct photogrammetric measurements of bathymetry using multi‐view stereo photogrammetry, specifically Structure‐from‐Motion (SfM). The main barrier to accurate bathymetric mapping with any photogrammetric technique is correcting for the refraction of light as it passes between the two different media (air and water), which causes water depths to appear shallower than they are. I propose and test an iterative approach that calculates a series of refraction correction equations for every point/camera combination in a SfM point cloud. This new method is meant to address shortcomings of other correction techniques and works within the current preferred method for SfM data collection, oblique and highly convergent photographs. The multi‐camera refraction correction presented here produces bathymetric datasets with accuracies of ~0.02% of the flying height and precisions of ~0.1% of the flying height. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high‐resolution bathymetric datasets for a variety of river, coastal, and estuary systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The production of topographic datasets is of increasing interest and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) requires a significant investment in personnel time, hardware and/or software. However, image‐based methods such as digital photogrammetry have been decreasing in costs. Developed for the purpose of rapid, inexpensive and easy three‐dimensional surveys of buildings or small objects, the ‘structure from motion’ photogrammetric approach (SfM) is an image‐based method which could deliver a methodological leap if transferred to geomorphic applications, requires little training and is extremely inexpensive. Using an online SfM program, we created high‐resolution digital elevation models of a river environment from ordinary photographs produced from a workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three‐dimensional space. The basic product of the SfM process is a point cloud of identifiable features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected in the field or from measurements of camera positions at the time of image acquisition. The georeferenced point cloud can then be used to create a variety of digital elevation products. We examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand‐held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low‐altitude platforms can produce point clouds with point densities comparable with airborne LiDAR, with horizontal and vertical precision in the centimeter range, and with very low capital and labor costs and low expertise levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
For an erosion event (October 2016) occurred at the Sparacia experimental area (Southern Italy), both terrestrial and low‐altitude aerial surveys were carried out by consumer grade camera and quadcopter (low‐cost unmanned aerial vehicle [UAV]) to measure rill erosion on two plots with steepness of 22% and 26%. Applying the structure from motion (SfM) technique, the three‐dimensional digital terrain models (3D‐DTMs) and the quasi three‐dimensional models (2.5D‐digital elevation model [DEM]) were obtained by the two surveys. Furthermore, 3D‐DTM and DEM were built using the available aerial photographs (166) and adding 40 terrestrial photographs. For the first time, the convergence index was applied to high‐resolution rill data for extracting the rill network, and a subsequent separation into contributing and non‐contributing rills was carried out. The comparison among the three surveys (terrestrial, UAV, and UAV + terrestrial) was developed using two morphometric parameters of the rill network (drainage density and drainage frequency). Moreover, using as reference the weight of sediment stored on the tanks located downstream of the plots, the reliability of soil loss measurement by 3D models was tested. For both contributing and non‐contributing rills, the morphometric parameters were higher for the terrestrial than for UAV and UAV + terrestrial surveys. For both plots, SfM always provided reliable soil loss measurements, which were affected by errors ranging from ?8% to 13%. Although the applied technique used a low‐cost UAV and a consumer grade camera, the obtained results demonstrated that a reliable estimate of rill erosion can be obtained in an area of interest.  相似文献   

9.
Gully morphology characteristics can be used effectively to describe the status of gully development. The Chabagou watershed, located in the hilly‐gully region of the Loess Plateau in China, was selected to investigate gully morphological characteristics using a 3D laser scanning technique (LIDAR). Thirty‐one representative gullies located at different watershed locations and gully orders were chosen to quantitatively describe gully morphology and establish empirical equations for estimating gully volume based on gully length and gully surface area. Images and point cloud data for the 31 gullies were collected, and digital elevation models (DEMs) with 10‐cm resolution were generated. ArcGIS 10.1 was then used to extract fundamental gully morphological parameters covering gully length (L), gully width (WT) and gully depth (D), and some derivative morphological parameters, including gully head curvature (C), gully width–depth ratio (w/d), gully bottom‐to‐top width ratio (WB/WT), gully surface area (Ag) and gully volume (Vg). The results indicated that gullies in the upper watershed and the second order were more developed based on their high values of gully head curvature. The potential for gully development increased from the second order to the fourth order. Within the same gully orders, gullies in the lower watershed were more active with more development potential. A method for differentiating between gully head and gully sidewalls based on the gully head curvature value was proposed with a mean relative error of 8.77%. U‐shaped cross‐sections were widely distributed in the upper watershed and upper positions of a gully, while V‐shaped cross‐sections were widely distributed in the lower watershed and lower positions of a gully. V–L and V–Ag empirical equations with acceptable accuracy were established and can be used to estimate gully erosion in the Loess hilly‐gully region. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Structure‐from‐Motion (SfM) photogrammetry is now used widely to study a range of earth surface processes and landforms, and is fast becoming a core tool in fluvial geomorphology. SfM photogrammetry allows extraction of topographic information and orthophotos from aerial imagery. However, one field where it is not yet widely used is that of river restoration. The characterisation of physical habitat conditions pre‐ and post‐restoration is critical for assessing project success, and SfM can be used easily and effectively for this purpose. In this paper we outline a workflow model for the application of SfM photogrammetry to collect topographic data, develop surface models and assess geomorphic change resulting from river restoration actions. We illustrate the application of the model to a river restoration project in the NW of England, to show how SfM techniques have been used to assess whether the project is achieving its geomorphic objectives. We outline the details of each stage of the workflow, which extend from preliminary decision‐making related to the establishment of a ground control network, through fish‐eye lens camera testing and calibration, to final image analysis for the creation of facies maps, the extraction of point clouds, and the development of digital elevation models (DEMs) and channel roughness maps. The workflow enabled us to confidently identify geomorphic changes occurring in the river channel over time, as well as assess spatial variation in erosion and aggradation. Critical to the assessment of change was the high number of ground control points and the application of a minimum level of detection threshold used to assess uncertainties in the topographic models. We suggest that these two things are especially important for river restoration applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Soil microtopography is a property of critical importance in many earth surface processes but is often difficult to quantify. Advances in computer vision technologies have made image‐based three‐dimensional (3D) reconstruction or Structure‐from‐Motion (SfM) available to many scientists as a low cost alternative to laser‐based systems such as terrestrial laser scanning (TLS). While the performance of SfM at acquiring soil surface microtopography has been extensively compared to that of TLS on bare surfaces, little is known about the impact of vegetation on reconstruction performance. This article evaluates the performance of SfM and TLS technologies at reconstructing soil microtopography on 6 m × 2 m erosion plots with vegetation cover ranging from 0% to 77%. Results show that soil surface occlusion by vegetation was more pronounced with TLS compared to SfM, a consequence of the single viewpoint laser scanning strategy adopted in this study. On the bare soil surface, elevation values estimated with SfM were within 5 mm of those from TLS although long distance deformations were observed with the former technology. As vegetation cover increased, agreement between SfM and TLS slightly degraded but was significantly affected beyond 53% of ground cover. Detailed semivariogram analysis on meter‐square‐scale surface patches showed that TLS and SfM surfaces were very similar even on highly vegetated plots but with fine scale details and the dynamic elevation range smoothed out with SfM. Errors in the TLS data were mainly caused by the distance measurement function of the instrument especially at the fringe of occlusion regions where the laser beam intersected foreground and background features simultaneously. From this study, we conclude that a realistic approach to digitizing soil surface microtopography in field conditions can be implemented by combining strengths of the image‐based method (simplicity and effectiveness at reconstructing soil surface under sparse vegetation) with the high accuracy of TLS‐like technologies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Recent advances are made in earth surface reconstruction with high spatial resolution due to SfM photogrammetry. High flexibility of data acquisition and high potential of process automation allows for a significant increase of the temporal resolution, as well, which is especially interesting to assess geomorphic changes. Two case studies are presented where 4D reconstruction is performed to study soil surface changes at 15 seconds intervals: (a) a thunderstorm event is captured at field scale and (b) a rainfall simulation is observed at plot scale. A workflow is introduced for automatic data acquisition and processing including the following approach: data collection, camera calibration and subsequent image correction, template matching to automatically identify ground control points in each image to account for camera movements, 3D reconstruction of each acquisition interval, and finally applying temporal filtering to the resulting surface change models to correct random noise and to increase the reliability of the measurement of signals of change with low intensity. Results reveal surface change detection with cm‐ to mm‐accuracy. Significant soil changes are measured during the events. Ripple and pool sequences become obvious in both case studies. Additionally, roughness changes and hydrostatic effects are apparent along the temporal domain at the plot scale. 4D monitoring with time‐lapse SfM photogrammetry enables new insights into geomorphic processes due to a significant increase of temporal resolution. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The surface roughness of agricultural soils is mainly related to the type of tillage performed, typically consisting of oriented and random components. Traditionally, soil surface roughness (SSR) characterization has been difficult due to its high spatial variability and the sensitivity of roughness parameters to the characteristics of the instruments, including its measurement scale. Recent advances in surveying have greatly improved the spatial resolution, extent, and availability of surface elevation datasets. However, it is still unknown how new roughness measurements relates with the conventional roughness measurements such as 2D profiles acquired by laser profilometers. The objective of this study was to evaluate the suitability of Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) photogrammetry techniques for quantifying SSR over different agricultural soils. With this aim, an experiment was carried out in three plots (5 × 5 m) representing different roughness conditions, where TLS and SfM photogrammetry measurements were co-registered with 2D profiles obtained using a laser profilometer. Differences between new and conventional roughness measurement techniques were evaluated visually and quantitatively using regression analysis and comparing the values of six different roughness parameters. TLS and SfM photogrammetry measurements were further compared by evaluating multi-directional roughness parameters and analyzing corresponding Digital Elevation Models. The results obtained demonstrate the ability of both TLS and SfM photogrammetry techniques to measure 3D SSR over agricultural soils. However, profiles obtained with both techniques (especially SfM photogrammetry) showed a loss of high-frequency elevation information that affected the values of some parameters (e.g. initial slope of the autocorrelation function, peak frequency and tortuosity). Nevertheless, both TLS and SfM photogrammetry provide a massive amount of 3D information that enables a detailed analysis of surface roughness, which is relevant for multiple applications, such as those focused in hydrological and soil erosion processes and microwave scattering. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
In this study we evaluate the extent to which accurate topographic data can be obtained by applying Structure from Motion (SfM) photogrammetric methods to archival imagery. While SfM has proven valuable in photogrammetric applications using specially acquired imagery (e.g. from unmanned aerial vehicles), it also has the potential to improve the precision of topographic data and the ease with which can be produced from historical imagery. We evaluate the application of SfM to a relatively extreme case, one of low relative relief: a braided river–floodplain system. We compared the bundle adjustments of SfM and classical photogrammetric methods, applied to eight dates. The SfM approach resulted in data quality similar to the classical approach, although the lens parameter values (e.g. focal length) recovered in the SfM process were not necessarily the same as their calibrated equivalents. Analysis showed that image texture and image overlap/configuration were critical drivers in the tie‐point generation which impacted bundle adjustment quality. Working with archival imagery also illustrated the general need for the thorough understanding and careful application of (commercial) SfM software packages. As with classical methods, the propagation of (random) error in the estimation of lens and exterior orientation parameters using SfM methods may lead to inherent systematic error in the derived point clouds. We have shown that linear errors may be accounted for by point cloud registration based on a reference dataset, which is vital for the further application in quantitative morphological analyses when using archival imagery. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Subaerial particle size data holds a wealth of valuable information for fluvial, coastal, glacial and other sedimentological applications. Recently, we have gained the opportunity to map and quantify surface particle sizes at the mesoscale using data derived from small unmanned aerial system (sUAS) imagery processed using structure from motion (SfM) photogrammetry. Typically, these sUAS‐SfM approaches have been based on calibrating orthoimage texture or point cloud roughness with particle size. Variable levels of success are reported and a single, robust method capable of producing consistently accurate and precise results in a range of settings has remained elusive. In this paper, we develop an original method for mapping surface particle size with the specific constraints of sUAS and SfM in mind. This method uses the texture of single sUAS images, rather than orthoimages, calibrated with particle sizes normalised by individual image scale. We compare results against existing orthoimage texture and roughness approaches, and provide a quantitative investigation into the implications of the use of sUAS camera gimbals. Our results indicate that our novel single image method delivers an optimised particle size mapping performance for our study site, outperforming both other methods and delivering residual mean errors of 0.02 mm (accuracy), standard deviation of residual errors of 6.90 mm (precision) and maximum residual errors of 16.50 mm. Accuracy values are more than two orders of magnitude worse when imagery is collected by a similar drone which is not equipped with a camera gimbal, demonstrating the importance of mechanical image stabilisation for particle size mapping using measures of image texture. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In the last decade advances in surveying technology have opened up the possibility of representing topography and monitoring surface changes over experimental plots (<10 m2) in high resolution (~103 points m‐1). Yet the representativeness of these small plots is limited. With ‘Structure‐from‐Motion’ (SfM) and ‘Multi‐View Stereo’ (MVS) techniques now becoming part of the geomorphologist's toolkit, there is potential to expand further the scale at which we characterise topography and monitor geomorphic change morphometrically. Moving beyond previous plot‐scale work using Terrestrial Laser Scanning (TLS) surveys, this paper validates robustly a number of SfM‐MVS surveys against total station and extensive TLS data at three nested scales: plots (<30 m2) within a small catchment (4710 m2) within an eroding marl badland landscape (~1 km2). SfM surveys from a number of platforms are evaluated based on: (i) topography; (ii) sub‐grid roughness; and (iii) change‐detection capabilities at an annual scale. Oblique ground‐based images can provide a high‐quality surface equivalent to TLS at the plot scale, but become unreliable over larger areas of complex terrain. Degradation of surface quality with range is observed clearly for SfM models derived from aerial imagery. Recently modelled ‘doming’ effects from the use of vertical imagery are proven empirically as a piloted gyrocopter survey at 50m altitude with convergent off‐nadir imagery provided higher quality data than an Unmanned Aerial Vehicle (UAV) flying at the same height and collecting vertical imagery. For soil erosion monitoring, SfM can provide data comparable with TLS only from small survey ranges (~5 m) and is best limited to survey ranges ~10–20 m. Synthesis of these results with existing validation studies shows a clear degradation of root‐mean squared error (RMSE) with survey range, with a median ratio between RMSE and survey range of 1:639, and highlights the effect of the validation method (e.g. point‐cloud or raster‐based) on the estimated quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a?1 (1896–2010) to 0.86 m a?1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a?1 (1978–2015). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
With the development of the techniques acquiring high-resolution digital terrain data,the digital terrain data acquisition technology has been widespread applied to the geoscience research.A revolutionary,low-cost and simply operative SfM (Structure from Motion) technology will make obtain high-resolution DEM data more convenient for researches on active tectonics.This paper summarizes the basic principles and workflows of SfM technology and processes and selects the Hongshuiba River area along the northern margin of the Qilian Shan to conduct data collection.We use a series of digital pictures to produce a texture with geographic information,in which data resolution is 6.73cm/pix and average density of point cloud is 220.667 point/m2.The coverage area is 0.286km2.Further,in order to compare the accuracy between SfM data and differential GPS (DGPS) data in details,SfM data are vertically shifted and tilt-corrected.After optimizing corrections of SfM data,the absolute value of elevation difference between two data substantially concentrates around 20cm,roughly equivalent to 2-folds of data error only after the elevation error correction.Elevation difference between two data is 10~15cm in 90% confidence interval.The maximum error is about 30cm,but accounts for less than 10%.Along the direction of fault trace,the height of fault scarp extracted from SfM data shows that vertical displacement of the latest tectonic activity in the east bank of Hongshuiba River is about 1m,and some minimum scarps height may be 0.3m.The results show SfM technology with high vertical accuracy can be able to replace differential GPS in high-precision topographic survey.After correcting of SfM data,elevation difference still exists,which may be associated with methods of generating DEM and SfM data accuracy,which in turn is controlled by the number and distribution of Ground Control Points (GCPs),photos density and camera shooting height,but also related to surface features,Fodongmiao-Hongyazi Fault  相似文献   

19.
20.
Little is known about the spatial and temporal variability of peat erosion nor some of its topographic and weather-related drivers. We present field and laboratory observations of peat erosion using Structure-from-Motion (SfM) photogrammetry. Over a 12 month period, 11 repeated SfM surveys were conducted on four geomorphological sites of 18–28 m2 (peat hagg, gully wall, riparian area and gully head) in a blanket peatland in northern England. A net topographic change of –14 to +30 mm yr–1 for the four sites was observed during the whole monitoring period. Cold conditions in the winter of 2016 resulted in highly variable volume change (net surface topographic rise first and lowering afterwards) via freeze–thaw processes. Long periods of dry conditions in the summer of 2017 led to desiccation and drying and cracking of the peat surface and a corresponding surface lowering. Topographic changes were mainly observed over short-term intervals when intense rainfall, flow wash, needle-ice production or surface desiccation was observed. In the laboratory, we applied rainfall simulations on peat blocks and compared the peat losses quantified by traditional sediment flux measurements with SfM derived topographic data. The magnitude of topographic change determined by SfM (mean value: 0.7 mm, SD: 4.3 mm) was very different to the areal average determined by the sediment yield from the blocks (mean value: –0.1 mm, SD: 0.1 mm). Topographic controls on spatial patterns of topographic change were illustrated from both field and laboratory surveys. Roughness was positively correlated to positive topographic change and was negatively correlated to negative topographic change at field plot scale and laboratory macroscale. Overall, the importance of event-scale change and the direct relationship between surface roughness and the rate of topographic change are important characteristics which we suggest are generalizable to other environments. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号