首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Wei Wei  Liding Chen  Bojie Fu  Yihe Lü  Jie Gong 《水文研究》2009,23(12):1780-1791
Rainfall extremes (RE) become more variable and stochastic in the context of climate change, increasing uncertainties and risks of water erosion in the real world. Vegetation also plays a key role in soil erosion dynamics. Responses of water erosion to RE and vegetation, however, remain unclear. In this article, on the basis of the data measured on 15 plots (area: 10 m × 10 m and 10 m × 5 m) and the definition of World Meteorological Organization (WMO) on rainfall extremes, 158 natural rainfall events from 1986 to 2005 were analysed, and rain depth and maximal 30‐min intensity (MI30) were used to define RE. Then, water erosion process under RE and five vegetation types (spring wheat, alfalfa, sea buckthorn, Chinese pine, and wheatgrass) were studied in a key loess semiarid hilly area, NW China. The following findings were made: (1) The minimal thresholds of depth and MI30 for defining RE were determined as 40·11 mm and 0·55 mm/min, respectively. Among the studied rainfall events, there were four events with both the variables exceeding the thresholds (REI), five events with depths exceeding 40·11 mm (REII), and four events with MI30 exceeding 0·55 mm/min (REIII). Therefore, not only extreme rainstorm, but also events with lower intensities and long durations were considered as RE. Moreover, RE occurred mostly in July and August, with a probability of 46 and 31%, respectively. (2) Extreme events, especially REI, in general caused severer soil‐water loss. Mean extreme runoff and erosion rates were 2·68 and 53·15 times of mean ordinary rates, respectively. The effect of each event on water erosion, however, becomes uncertain as a result of the variations of RE and vegetation. (3) The buffering capacities of vegetation on RE were generally in the order of sea buckthorn > wheatgrass > Chinese pine > alfalfa > spring wheat. In particular, sea buckthorn reduced runoff and erosion effectively after 3–4 years of plantation. Therefore, to fight against water erosion shrubs like sea buckthorn are strongly recommended as pioneer species in such areas. On the contrary, steep cultivation (spring wheat on slopes), however, should be avoided, because of its high sensitivities to RE. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Headcut erosion is associated with major hydraulic changes induced by the gully head of concentrated flow. However, the variation in the hydraulic characteristics of the headcut erosion process is still not clear in the gully region of the Loess Plateau. A series of rainfall combined scouring experiments (flow discharges ranging from 3.6 to 7.2 m3 hr−1, with 0.8 mm min−1 rainfall intensity) were conducted on experimental plots to clarify the variation in the hydraulic parameters induced by gully head and erosion processes under different flow discharges. The results showed that concentrated flows in the catchment area and gully bed were turbulent (Reynolds number ranging from 1,876 to 6,693) and transformed between supercritical and subcritical (Froude number ranging from 0.96 to 3.73). The hydraulic parameters, such as the flow velocity, Reynolds number, shear stress, stream power, Darcy–Weisbach friction factor, and unit stream power in the catchment area were 0.45–0.59 m s−1, 2086–6693, 1.96–5.33 Pa, 0.89–2.86 W m−2, 0.08–0.16, and 0.023–0.031 m s−1, respectively. When the concentrated flows dropped from the gully head, the hydraulic parameters in the gully bed decreased by 3.39–26.07%, 1.49–29.99%, 65.19–67.14%, 67.25–74.96%, 28.53–61.31%, and 67.82–77.14%, respectively, which contributed to the flow energy consumption at the gully head. As flow discharge increased, Reynolds number, shear stress, and stream power increased, while flow velocity, Froude number, unit stream power, and Darcy–Weisbach friction factor did not. The flow energy consumption at the gully head was 9.66–10.13, 13.25–13.74, 15.68–16.41, and 19.28–20.25 J s−1, respectively, under different flow discharges and accounted for 60.58–68.50% of the flow energy consumption of the experimental plots. Generally, the sediment discharges increased rapidly at the initial stage, then increased slowly, and finally reached a steady state condition, which showed a significant declining logarithmic trend with experimental duration (P<.01) and increased with increasing flow discharge. Accordingly, the flow energy consumption was significantly correlated with the sediment yield. These findings could improve our understanding of the hydraulic properties and flow energy characteristics of headcut erosion.  相似文献   

3.
Post‐fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small‐plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire‐induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush‐dominated sites. Runoff and erosion were measured immediately following and each of 3 years post‐wildfire. Spatial and temporal variability in post‐fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire‐induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3‐year cumulative interrill sediment yield on burned hillslopes (50 g m?2) was twice that of unburned hillslopes (25 g m?2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3‐year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3‐year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m?2 and 6 g m?2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post‐fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire‐induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

4.
Developing models to predict on‐site soil erosion and off‐site sediment transport at the agricultural watershed scale represent an on‐going challenge in research today. This study attempts to simulate the daily discharge and sediment loss using a distributed model that combines surface and sub‐surface runoffs in a small hilly watershed (< 1 km2). The semi‐quantitative model, Predict and Localize Erosion and Runoff (PLER), integrates the Manning–Strickler equation to simulate runoff and the Griffith University Erosion System Template equation to simulate soil detachment, sediment storage and soil loss based on a map resolution of 30 m × 30 m and over a daily time interval. By using a basic input data set and only two calibration coefficients based, respectively, on water velocity and soil detachment, the PLER model is easily applicable to different agricultural scenarios. The results indicate appropriate model performance and a high correlation between measured and predicted data with both Nash–Sutcliffe efficiency (Ef) and correlation coefficient (r2) having values > 0.9. With the simple input data needs, PLER model is a useful tool for daily runoff and soil erosion modeling in small hilly watersheds in humid tropical areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Extensive valley fills at the base of the escarpment in upper Wolumla Creek, on the south coast of New South Wales, Australia, have formed from a combination of ‘cut and fill’ processes. The valley fills comprise series of alternating, horizontally bedded sand and mud units, reflecting reworking of detritus from deeply weathered granites of the Bega Batholith. Sand units are deposited as sand sheets or splays on floodplain surfaces or in floodouts that form atop intact valley fill surfaces downstream of discontinuous gullies. Alternatively, sands are deposited from bedload and form bars or part of the valley floor within channel fills. Organic-rich mud units are deposited from suspension in swamps or in seepage zones at the distal margin of floodouts. Within 5 km of the escarpment, valley deposits grade downstream from sand sheet and splay deposition in floodouts, to mud deposition in swamp and seepage zones. Radiocarbon dates indicate that virtually the entire valley fill of upper Wolumla Creek was excavated prior to 6000 years BP . Remnant terraces are evident at valley margins. The valley subsequently filled between 6000 years BP and 1000 years BP producing valley fills around 12 m deep, but no greater than 300 m wide. Reincision into the valley fill, on a scale smaller than the present incision phase, is indicated at around 1000 years BP , following which the channel refilled. Portion plans dated from 1865 refer to the study area as ‘Wolumla Big Flat’, and show large areas of swampy terrain, suggesting that the valley fill had re-established by this time. Within a few decades of European settlement the valley fill incised once more. Upper Wolumla Creek now has a channel over 10 m deep and 100 m wide in places, draining a catchment area of less than 20 km2. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
In most regions of the world overgrazing plays a major role in land degradation and thus creates a major threat to natural ecosystems. Several feedbacks exist between overgrazing, vegetation, soil infiltration by water and soil erosion that need to be better understood. In this study of a sub‐humid overgrazed rangeland in South Africa, the main objective was to evaluate the impact of grass cover on soil infiltration by water and soil detachment. Artificial rains of 30 and 60 mm h?1 were applied for 30 min on 1 m2 micro‐plots showing similar sandy‐loam Acrisols with different proportions of soil surface coverage by grass (Class A: 75–100%; B: 75–50%; C: 50–25%; D: 25–5%; E: 5–0% with an outcropping A horizon; F: 0% with an outcropping B horizon) to evaluate pre‐runoff rainfall (Pr), steady state water infiltration (I), sediment concentration (SC) and soil losses (SL). Whatever the class of vegetal cover and the rainfall intensity, with the exception of two plots probably affected by biological activity, I decreased regularly to a steady rate <2 mm h?1 after 15 min rain. There was no significant correlation between I and Pr with vegetal cover. The average SC computed from the two rains increased from 0·16 g L?1 (class A) to 48·5 g L?1 (class F) while SL was varied between 4 g m?2 h?1 for A and 1883 g m?2 h?1 for F. SL increased significantly with decreasing vegetal cover with an exponential increase while the removal of the A horizon increased SC and SL by a factor of 4. The results support the belief that soil vegetation cover and overgrazing plays a major role in soil infiltration by water but also suggest that the interrill erosion process is self‐increasing. Abandoned cultivated lands and animal preferred pathways are more vulnerable to erosive processes than simply overgrazed rangelands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Identifying the role of the two main driving factors—climate change and human interventions—in influencing runoff processes is essential for sustainable water resources management. For this purpose, runoff regime change detection methods were used to divide the available hydroclimatic variables into a baseline and a disturbed period. We applied hydrological modelling and the climate elasticity of runoff method to determine the contribution of climate change and human interventions to changes in runoff. The hydrological model, SWAT, was calibrated during the baseline period and used to simulate the naturalized runoff pattern for the disturbed period. Significant changes in runoff in the study watershed were detected from 1982, suggesting that human interventions play a dominant role in influencing runoff. The combined effects of climate change and human interventions resulted in a 41.3 mm (23.9%) decrease in runoff during the disturbed period, contributing about 40% and 60% to the total runoff change, respectively. Furthermore, analysis of changes in land cover dynamics in the watershed over the past four decades supported these changes in runoff. Contrary to other decades, the discrepancy between naturalized and observed runoff was small in the 2010s, likely due to increased baseflow as a result of storage and/or release of excess water during the dry season. This study contributes to our understanding of how climate change and human interventions affect hydrological responses of watersheds, which is important for future sustainable water management and drought adaptation.  相似文献   

8.
This paper describes the methods used and some preliminary results of simulated erosion studies on soils with cryptogamic crusts from a semiarid rangeland environment. Two 0·3 m2 shallow monoliths were collected from the upper 20 cm of a Typic Haplargid from the semiarid Australian rangelands and subjected to a range of rainfall intensities and durations representing potentially erosive summer and winter rainfall events. One of the monoliths was cleared of vegetation by a simulated low intensity bushfire. Macro- and micromorphological properties of the surface, as well as runoff and erosion losses, were measured during the experiment. Runoff and erosion losses were, as expected, greater for all conditions on the burned than on the unburned monolith. Intensive rainfall damaged the cryptogamic crust unprotected by vegetation by widening and deepening desiccation cracks around the cryptogams, and breaking away and dispersing larger soil fragments from the crack margins. The burned and eroded surfaces provided a much poorer environment for seed entrapment, germination, and growth than did the unburned surface.  相似文献   

9.
10.
The overarching objective of this research was to provide an improved understanding of the role of land use and associated management practices on long‐term water‐driven soil erosion in small agricultural watersheds by coupling the established, physically based, distributed parameter Water Erosion Prediction Project (WEPP) model with long‐term hydrologic, land use and soil data. A key step towards achieving this objective was the development of a detailed methodology for model calibration using physical ranges of key governing parameters such as effective hydraulic conductivity, critical hydraulic shear stress and rill/inter‐rill erodibilities. The physical ranges for these governing parameters were obtained based on in situ observations within the South Amana Sub‐Watershed (SASW) (~26 km2) of the Clear Creek, IA watershed where detailed documentation of the different land uses was available for a period of nearly 100 years. A quasi validation of the calibrated model was conducted through long‐term field estimates of water and sediment discharge at the outlet of SASW and also by comparing the results with data reported in the literature for other Iowa watersheds exhibiting similar biogeochemical properties. Once WEPP was verified, ‘thought experiments’ were conducted to test our hypothesis that land use and associated management practices may be the major control of long‐term erosion in small agricultural watersheds such as SASW. Those experiments were performed using the dominant 2‐year crop rotations in the SASW, namely, fall till corn–no till bean (FTC‐NTB), no till bean–spring till corn (NTB‐STC) and no till corn–fall till bean (NTC‐FTB), which comprised approximately 90% of the total acreage in SASW. Results of this study showed that for all crop rotations, a strong correspondence existed between soil erosion rates and high‐magnitude precipitation events during the period of mid‐April and late July, as expected. The magnitude of this correspondence, however, was strongly affected by the crop rotation characteristics, such as canopy/residue cover provided by the crop, and the type and associated timing of tillage. Tillage type (i.e. primary and secondary tillages) affected the roughness of the soil surface and resulted in increases of the rill/inter‐rill erodibilities up to 35% and 300%, respectively. Particularly, the NTC‐FTB crop rotation, being the most intense land use in terms of tillage operations, caused the highest average annual erosion rate within the SASW, yielding quadrupled erosion rates comparatively to NTB‐STC. The impacts of tillage operation were further exacerbated by the timing of the operations in relation to precipitation events. Timing of operations affected the ‘life‐time’ of residue cover and as a result, the degree of protection that residue cover offers against the water action on the soil surface. In the case of NTC‐FTB crop rotation, dense corn residue stayed on the ground for only 40 days, whereas for the other two rotations, corn residue provided a protective layer for nearly 7 months, lessening thus the degree of soil erosion. The cumulative effects of tillage type and timing in conjunction with canopy/residue cover led to the conclusion that land management practices can significantly amplify or deamplify the impact of precipitation on long‐term soil erosion in small agricultural watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The estimation of erosion and sediment delivery rates in tropical mountain watersheds is difficult and most of the methods widely used for estimating soil erosion over large areas have serious limitations. The 137Cs approach has potential for quantifying soil erosion because it can provide retrospective estimates of long‐term (since 1963) net sediment redistribution relatively quickly. Despite its great potential, 137Cs has not yet been used in an extensive, reconnaissance level survey of erosion in complex tropical mountain environments. The objective of this study was to examine the applicability of the 137Cs method to estimate erosion on steep tropical agricultural lands (23 to 80% slopes) in the Nizao watershed, a humid, tropical mountain area of the Dominican Republic. In this study we (i) examine the variation of 137Cs in ten reference sites—eight coffee groves and two forested sites—and (ii) estimate erosion from 14 cultivated fields. The soil pool of 137Cs ranged from to 150 to 192 mBq cm−2 on reference sites with minimal erosion. Variability among reference sites was less than expected for such complex mountain terrain. The variability within coffee and forested reference (average CV=28%) sites was similar to the variability found on grassland and forested reference sites in the temperate zone. The estimated annual soil loss from 14 sampled fields ranged from 6 to 61 t ha−1 year−1 with an overall mean of 26 t ha−1 year−1. Overall, the soil erosion estimates found using the 137Cs method were much lower than those often assumed for such steep tropical hillsides. These erosion estimates account for soil loss since 1963 only and it seems likely that soil losses may have been much higher in earlier decades immediately after initial forest clearing earlier in the 20th century. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Although the protective role of leaf litter cover against soil erosion is known for a long time, little research has been conducted on the processes involved. Moreover, the impact of soil meso‐ and macrofauna within the litter layer on erosion control is not clear. To investigate how leaf litter cover and diversity as well as meso‐ and macrofauna influence sediment discharge in subtropical forest ecosystems, a field experiment has been carried out in Southeast China. A full‐factorial random design with 96 micro‐scale runoff plots and 7 domestic leaf species was established and erosion was triggered by a rainfall simulator. Our results demonstrate that leaf litter cover protects soil from erosion (?82 % sediment discharge on leaf covered plots) by rainfall and this protection is removed as litter decomposes. The protective effect is influenced by the presence or absence of soil meso‐ and macrofauna. Fauna presence increases soil erosion rates significantly by 58 %, while leaf species diversity shows a non‐significant negative trend. We assume that the faunal effect arises from arthropods slackening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Even though the diversity level did not show a significant influence, single leaf species in monocultures show rather different impacts on sediment discharge and thus, erosion control. In our experiment, runoff plots with leaf litter from Machilus thunbergii showed the highest sediment discharge (68.0 g m?2) whereas plots with Cyclobalanopsis glauca showed the smallest rates (7.9 g m?2). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Catchments have highly variable yields of runoff and soil erosion. The size, land use and the surface cover play a significant role and influence the catchment response and parameter values of simulation models. Two experimental basins—the Cariri basins—were equipped in a semi-arid region of Brazil, for obtaining runoff and sediment yield at different catchment scales, as well as, to evaluate the influence of the land use and surface cover. In the first basin, located in the municipality of Sumé, the field studies were carried out at two different scales: four micro-catchments with an area of around 0.5 ha and nine standard Wischmeier-type erosion plots of 100 m2. The experimental units had varied vegetation and management. They were subjected only to natural rainfall events, and were monitored from 1982 to 1991. The total runoff and total sediment yield were determined for each of the events. The installations in the second basin, in the municipality of São João do Cariri, from 1999, include two erosion plots, three micro-catchments, and two sub-catchments of a small basin. These basins are still being monitored for runoff and sediment production. Among the micro-catchments two are nested to detect any scale effect at the micro-catchment level. Nearly 600 events of precipitation, that produced runoff in at least one of the experimental units, have been registered. These data have been used to evaluate the influence of various factors, including cultivation practices and to calibrate hydrological models for plots and micro-catchments. Parameters have been tested by means of cross validations among micro-catchments and sub-catchments. The data sets are made available to all the catchment hydrology researchers and others at https://doi.org/10.5281/zenodo.4690886 .  相似文献   

14.
Climate change and human activities are two major driving forces affecting the hydrologic cycle, which further influence the stationarity of the hydrologic regime. Hydrological drought is a substantial negative deviation from the normal hydrologic conditions affected by these two phenomena. In this study, we propose a framework for quantifying the effects of climate change and human activities on hydrological drought. First, trend analysis and change‐point test are performed to determine variations of hydrological variables. After that, the fixed runoff threshold level method (TLM) and the standardized runoff index (SRI) are used to verify whether the traditional assessment methods for hydrological drought are applicable in a changing environment. Finally, two improved drought assessment methods, the variable TLM and the SRI based on parameter transplantation are employed to quantify the impacts of climate change and human activities on hydrological drought based on the reconstructed natural runoff series obtained using the variable infiltration capacity hydrologic model. The results of a case study on the typical semiarid Laohahe basin in North China show that the stationarity of the hydrological processes in the basin is destroyed by human activities (an obvious change‐point for runoff series is identified in 1979). The traditional hydrological drought assessment methods can no longer be applied to the period of 1980–2015. In contrast, the proposed separation framework is able to quantify the contributions of climate change and human activities to hydrological drought during the above period. Their ranges of contributions to hydrological drought calculated by the variable TLM method are 20.6–41.2% and 58.8–79.4%, and the results determined by the SRI based on parameter transplantation method are 15.3–45.3% and 54.7–84.7%, respectively. It is concluded that human activities have a dominant effect on hydrological drought in the study region. The novelty of the study is twofold. First, the proposed method is demonstrated to be efficient in quantifying the effects of climate change and human activities on hydrological drought. Second, the findings of this study can be used for hydrological drought assessment and water resource management in water‐stressed regions under nonstationary conditions.  相似文献   

15.
Rain and throughfall drops were sampled during rain events in a New Zealand beech forest and the frequency distributions of drop mass and kinetic energy calculated. The kinetic energy of throughfall under the canopy was always greater than that of rainfall in the open, notwithstanding interception losses. During a typical rain event in which 51 mm fell in 36 h, the total kinetic energy of throughfail was 1.5 times greater than that of rainfall, and the mean amount of sand splashed from sample cups was 3.1 times greater under the canopy than in the open. It appears that where mineral soil is exposed at the surface, by animal trampling or burrowing for example, rates of soil detachment by splash under a forest canopy will probably exceed those in the open.  相似文献   

16.
An adequately tested soil and water assessment tool (SWAT) model was applied to the runoff and sediment yield of a small agricultural watershed in eastern India using generated rainfall. The capability of the model for generating rainfall was evaluated for a period of 18 years (1981–1998). The watershed and subwatershed boundaries, drainage networks, slope, soil series and texture maps were generated using a geographical information system (GIS). A supervised classification method was used for land‐use/cover classification from satellite imageries. Model simulated monthly rainfall for the period of 18 years was compared with observations. Simulated monthly rainfall, runoff and sediment yield values for the monsoon season of 8 years (1991–1998) were also compared with their observed values. In general monthly average rainfall predicted by the model was in close agreement with the observed monthly average values. Also, simulated monthly average values of surface runoff and sediment yield using generated rainfall compared well with observed values during the monsoon season of the years 1991–1998. Results of this study revealed that the SWAT model can generate monthly average rainfall satisfactorily and thereby can produce monthly average values of surface runoff and sediment yield close to the observed values. Therefore, it can be concluded that the SWAT model could be used for developing a multiple year management plan for the critical erosion prone areas of a small watershed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
An inexpensive, mobile field rainfall simulator and runoff plot frame were developed for use on hillside vineyards. The simulator framework and components were lightweight, readily available and easily manageable such that they can be handled by one person during transport, set–up and operation. The vineyard rainfall simulator was simpler than many of the machines in recent use for similar studies, yet offered equal or improved performance for small‐plot studies. The system developed consistent sized 2·58 mm raindrops at intensities ranging from 20 to 90 mm/h. The average distribution uniformity coefficient at an intensity of 60 mm/h was 91·7%, with a deviation of only 2·2%. This coefficient was similar to the range reported for a more complex rotating disk simulator, and was notably greater than that obtained for other similar devices. The system water capacity of 40 l allowed for 1‐h storm durations at 60 mm/h, usually sufficient time for commencement of erosion and runoff. The runoff plot frame was designed to be quickly installed, and to discourage sediment deposition in the routing of runoff to collect containers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Cryptogams are communities of non-vascular plants that live on the soil surface. Numerous functions have been attributed to these crusts, including changes in soil fertility and nutrient status, soil hydrology and soil erosion. Most significant for this paper is the reported benefit of cryptogams in reducing soil erosion by water in semi-arid areas. However, to date there have been few attempts to understand the soil conservation value of cryptogams in subsistence agricultural systems or in humid mountain environments. This paper investigates the potential of cryptogams in soil erosion by water on agricultural hillslope terraces (bariland) in the Nepal Middle Hills of the southern monsoonal Himalaya. The research is significant because the loss of fertile topsoil is considered by some to be the biggest threat to the livelihoods of subsistence farmers in the area in the medium and long term. The current study was conducted in the field between two of the weeding events that take place under maize cover, grown in the traditional manner. Three groundcover types which represented (i) maize only (types A), (ii) maize and weed cover (types B), and (iii) maize and cryptogam cover (types C) were monitored utilizing multiple microerosion plots. Measurements of runoff and soil loss data were collected sequentially on a storm-by-storm basis throughout the monitored period from 24 July 1997 to 29 August 1997. Measurements of infiltration rates were also taken on each of the groundcover types at selected times. Results collected from the erosion plots demonstrate that runoff and soil losses over distances of <2 m can be significantly reduced by up to 50 per cent with cryptogam cover, compared to maize-only canopies. Mean runoff for all storm events sampled from plot types A, B and C were 3·4 l m−2, 1·6 l m−2 and 1·5 l m−2 respectively. For soil loss, the results were 21·7 g m−2, 11·3 g m−2 and 10·2 g m−2 respectively. Therefore, cryptogams would appear to offer a similar degree of protection to the soil surface from runoff and raindrop erosion, to that afforded by weed cover. Weed and cryptogam covers protect the soil surface from rainfall kinetic energies and work to preserve surface microtopographies, depressional storage and surface water detention. Terminal infiltration rates taken at the end of the monitored period showed that well developed maize- and cryptogam-covered soil surfaces (types C) have a mean terminal infiltration rate of 35·0 mm h−1 compared to 44·5 mm h−1 for comparable maize- and weed-covered soil surfaces (types B), and 15·5 mm h−1 for maize-only soil surfaces (types A). These results show that cryptogams and weeds also have relatively higher infiltration rates than comparable maize-only covered plots, devoid of groundcover. The findings in this study may have implications for traditional weed management practices used by local hill farmers, which often destroy cryptogam soil coatings two to three times during the maize growing period. However, further work needs to be done to ascertain farmers' understandings of cryptogams. It is hoped that conservationists will benefit from incorporating cryptogams into the design of future soil erosion studies relating to development programmes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Regolith surface characteristics and response were examined over a three‐year period in a badland area in a Mediterranean middle‐mountain zone near Vallcebre (Eastern Pyrenees). Preliminary work carried out in this area indicated clear seasonal patterns of regolith properties driven by frost heaving in winter and crusting and erosion in the rest of the year. Rainfall simulations were performed with a small portable nozzle simulator in order to study seasonal changes in runoff generation, erosion rates and raindrop effect on bulk density changes. The results showed large seasonal variations in runoff and erosion responses. In?ltration rates after runoff start were correlated with precipitation depth before runoff start; runoff generation was therefore related to regolith saturation only to a very limited extent. Erosion rates were more controlled by runoff rates than by the weakness of regolith against raindrop splash, and sediment grain size increased with concentration. The combined role of antecedent regolith moisture and bulk density explained most of the seasonal variability in in?ltration, bulk density changes during rainfall and erosion rates, but some seasonal differences in sediment detachability were not explained by these variables and may be attributed to changes in roughness. Overall, runoff and erosion responses were relatively stable during spring and autumn, whereas wide variations in in?ltration rates and sediment detachment occurred in winter and summer respectively. Experiments conducted in a single season would have produced poorly representative, if not erroneous, results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号