首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire severity is recognized as a key factor in explaining post‐fire soil erosion. However, the relationship between soil burn severity and soil loss has not been fully established until now. Sediment availability may also affect the extent of post‐fire soil erosion. The objective of this study was to determine whether soil burn severity, estimated by an operational classification system based on visual indicators, can significantly explain soil loss in the first year after wildfire in shrubland and other areas affected by crown fires in northwest (NW) Spain. An additional aim was to establish indicators of sediment availability for use as explanatory variables for post‐fire soil loss. For these purposes, we measured hillslope‐scale sediment production rates and site characteristics during the first year after wildfire in 15 experimental sites using 65 plots. Sediment yields varied from 0.2 Mg ha?1 to 50.1 Mg ha?1 and soil burn severity ranged from low (1.8) to very high (4.5) in the study period. A model that included soil burn severity, annual precipitation and a land use factor (as a surrogate for sediment availability) as explanatory variables reasonably explained the erosion losses measured during the first year after fire. Model validation confirmed the usefulness of this empirical model. The proposed empirical model could be used by forest managers to help evaluate erosion risks and to plan post‐fire stabilization activities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Wildfire denudes vegetation and impacts chemical and physical soil properties, which can alter hillslope erosion rates. Post‐wildfire erosion can also contribute disproportionately to long‐term erosion rates and landscape evolution. Post‐fire hillslope erosion rates remain difficult to predict and document at the hillslope scale. Here we use 210Pbaex (lead‐210 mineral‐adsorbed excess) inventories to describe net sediment erosion on steep, convex hillslopes in three basins (unburned, moderately and severely burned) in mountainous central Idaho. We analyzed nearly 300 soil samples for 210Pbaex content with alpha spectrometry and related net sediment erosion to burn severity, aspect, gradient, curvature and distance from ridgetop. We also tested our data against models for advective, linear and non‐linear diffusive erosion. Statistically lower net soil losses on north‐ versus south‐facing unburned hillslopes suggest that greater vegetative cover and soil cohesion on north‐facing slopes decrease erosion. On burned hillslopes, erosion differences between aspects were less apparent and net erosion was more variable, indicating that vegetation influences erosion magnitude and fire drives erosion variability. We estimated net soil losses throughout the length of unburned hillslopes, including through a footslope transition to concave form. In contrast, on burned hillslopes, the subtle shift from convex to concave form was associated with deposition of a post‐fire erosion pulse. Such overall patterns of erosion and deposition are consistent with predictions from a non‐linear diffusion equation. This finding also suggests that concave sections of overall convex hillslopes affect post‐disturbance soil erosion and deposition. Despite these patterns, no strong relationships were evident between local net soil losses and gradient, curvature, distance from ridgetop, or erosion predicted with advection or diffusion equations. The observed relationship between gradient and erosion is therefore likely more complex or stochastic than often described theoretically, especially over relatively short timescales (60–100 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Fallout radionuclides, including lead‐210 excess (210Pbex), have been broadly and successfully used to quantify net hillslope sediment transport in agricultural, pastoral and forested landscapes but have only recently been applied in burned terrain. Quantifying post‐fire erosion is important because fires can amplify hillslope erosion, impacting terrestrial and aquatic habitat and water quality. However, we lack a basic understanding of the fate of 210Pbex in fires. To address this knowledge gap, we collected over 400 soil samples from unburned, moderately and severely burned forested sites in central Idaho. We measured soil 210Pbex content at stable reference and eroding sites and in mineral and organic soil components. At all sites, organic matter had the highest concentration of 210Pbex, representing 30% to 73% of the total activity. At the severely and moderately burned sites, 210Pbex reference inventories were lower by 58% and 41%, with about 40% less organic mass, relative to the unburned site. These results indicate that most 210Pbex in our semi‐arid, forested sites was bound to organic matter, and that a substantial portion of this lead was lost due to forest fires. These losses likely occurred through volatilization and wind transport of smoke and ash. In the moderately burned site, 210Pbex losses were more spatially variable, potentially due to spatially uneven fire intensity and effects. Despite equal percent losses of 210Pbex, lower inventories at the burned sites produced lower calculated net erosion rates relative to the unburned site. Thus, given methodological uncertainties, 210Pbex losses due to fire, and the subsequent sensitivity of calculated net erosion rates to these lower 210Pbex inventories, we suggest this method should not be used in burned terrain to calculate absolute net erosion and deposition rates. However, within a given burned site, 210Pbex inventories still provide useful information describing relative soil losses and storage across the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The High Park Fire burned ~35 300 ha of the Colorado Front Range during June and July 2012. In the areas of most severe burn, all trees were killed and the litter and duff layers of soil were completely removed. Post‐fire erosion caused channel heads to develop well upslope from pre‐fire locations. The locations of 50 channel heads in two burned catchments were documented and the range of drainage areas contributing to these channel heads to drainage areas of unburned channel heads in the region measured previously were compared. Mean drainage area above channel heads in the burned zone decreased by more than two‐orders of magnitude relative to unburned sites. Drainage area above channel heads between the two burned catchments does not differ significantly with respect to slope, likely as a result of differences in surface roughness between the two sites following the fire. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1–1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1–1000 km2), representative of perennial stream networks, was derived from a 30‐m digital elevation model and analysed by computer analysis. Scaling laws used to describe large‐scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second‐order effect that reduces the number of order 1 and order 2 streams predicted by the large‐scale channel structure. This network comprises two spatial patterns of rills with width‐to‐depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width‐to‐depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and channel) had different drainage network structures to collect and transfer water and sediment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre‐fire rates. The maximum unit‐area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1. Recovery to pre‐fire conditions seems to have occurred by 2000 because for a maximum 30‐min rainfall intensity of 50 mm h?1, the unit‐area peak discharge in 1997 was 6.6 m3 s?1 km?2, while in 2000 a similar intensity produced only 0.11 m3 s?1 km?2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200‐fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

8.
Decoupling the impacts of climate and tectonics on hillslope erosion rates is a challenging problem. Hillslope erosion rates are well known to respond to changes in hillslope boundary conditions (e.g. channel incision rates) through their dependence on soil thickness, and precipitation is an important control on soil formation. Surprisingly though, compilations of hillslope denudation rates suggest little precipitation sensitivity. To isolate the effects of precipitation and boundary condition, we measured rates of soil production from bedrock and described soils on hillslopes along a semi‐arid to hyperarid precipitation gradient in northern Chile. In each climate zone, hillslopes with contrasting boundary conditions (actively incising channels versus non‐eroding landforms) were studied. Channel incision rates, which ultimately drive hillslope erosion, varied with precipitation rather than tectonic setting throughout the study area. These precipitation‐dependent incision rates are mirrored on the hillslopes, where erosion shifts from relatively fast and biologically‐driven to extremely slow and salt‐driven as precipitation decreases. Contrary to studies in humid regions, bedrock erosion rates increase with precipitation following a power law, from ~1 m Ma?1 in the hyperarid region to ~40 m Ma?1 in the semi‐arid region. The effect of boundary condition on soil thickness was observed in all climate zones (thicker soils on hillslopes with stable boundaries compared to hillslopes bounded by active channels), but the difference in bedrock erosion rates between the hillslopes within a climate region (slower erosion rates on hillslopes with stable boundaries) decreased as precipitation decreased. The biotic‐abiotic threshold also marks the precipitation rate below which bedrock erosion rates are no longer a function of soil thickness. Our work shows that hillslope processes become sensitive to precipitation as life disappears and the ability of the landscape to respond to tectonics decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Post-fire catchment and water utility managers throughout the world use predictive models to estimate potential erosion risks to aid in evaluating downstream impacts of increased runoff and erosion, and to target critical areas within a fire for applying mitigation practices. Erosion prediction can be complicated by forest road networks. Using novel GIS technology and soil erosion modelling, this study evaluated the effect of roads on surface runoff, erosion and sediment yields following a wildfire and determined that the predictive models were providing reasonable results. The GeoWEPP model was used to simulate onsite erosion and offsite sediment delivery before and after fire disturbance using a 2-m resolution DEM as the terrain layer. Erosion rates in excess of 4 Mg ha−1 year−1 were predicted mainly from steep moderate and high severity burn areas. Roads influenced surface runoff flow path distributions and sub-catchment delineations, affecting the spatial distribution of sediment detachment and transport. Roads tended to reduce estimated erosion on slopes below the roads but increases in erosion rates were estimated for road fillslopes. Estimated deposition amounts on roads and in sediment basins were similar to measured amounts. The results confirm that road prisms, culverts and road ditches influence sedimentation processes after wildfire, and they present opportunities to detain eroded sediments.  相似文献   

10.
Wildfire has been shown to increase erosion by several orders of magnitude, but knowledge regarding short‐term variations in post‐fire sediment transport processes has been lacking. We present a detailed analysis of the immediate post‐fire sediment dynamics in a semi‐arid basin in the southwestern USA based on suspended sediment rating curves. During June and July 2003, the Aspen Fire in the Coronado National Forest of southern Arizona burned an area of 343 km2. Surface water samples were collected in an affected watershed using an event‐based sampling strategy. Sediment rating parameters were determined for individual storm events during the first 18 months after the fire. The highest sediment concentrations were observed immediately after the fire. Through the two subsequent monsoon seasons there was a progressive change in rating parameters related to the preferential removal of fine to coarse sediment. During the corresponding winter seasons, there was a lower supply of sediment from the hillslopes, resulting in a time‐invariant set of sediment rating parameters. A sediment mass‐balance model corroborated the physical interpretations. The temporal variability in the sediment rating parameters demonstrates the importance of storm‐based sampling in areas with intense monsoon activity to characterize post‐fire sediment transport accurately. In particular, recovery of rating parameters depends on the number of high‐intensity rainstorms. These findings can be used to constrain rapid assessment fire‐response models for planning mitigation activities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Fallout radionuclides (FRNs) 137Cs and 210Pb are well established as tracers of surface and sub‐surface soil erosion contributing sediment to river systems. However, without additional information, it has not been possible to distinguish sub‐surface soil erosion sources. Here, we use the FRN 7Be (half‐life 53 days) in combination with 137Cs and excess 210Pb to trace the form of erosion contributing sediment in three large river catchments in eastern Australia; the Logan River (area 3700 km2), Bowen River (9400 km2) and Mitchell River (4700 km2). We show that the combination of 137Cs, excess 210Pb and 7Be can discriminate horizontally aligned sub‐surface erosion sources (rilled and scalded hillslopes and the floors of incised drainage lines and gully ‘badland’ areas) from vertical erosion sources (channel banks and gully walls). Specifically, sub‐surface sources of sediment eroded during high rainfall and high river flow events have been distinguished by the ability of rainfall‐derived 7Be to label horizontal soil surfaces, but not vertical. Our results indicate that in the two northern catchments, erosion of horizontal sub‐surface soil sources contributed almost as much fine river sediment as vertical channel banks, and several times the contribution of hillslope topsoils. This result improves on source discrimination provided previously and indicates that in some areas erosion of hillslope soils may contribute significantly to sediment yield, but not as topsoil loss. We find that in north‐eastern Australia, scalded areas on hillslopes and incising drainage lines may be sediment sources of comparable importance to vertical channel banks. Previous studies have used the combination of 137Cs, excess 210Pb and 7Be to estimate soils losses at the hillslope scale. Here, we show that with timely and judicious sampling of soil and sediment during and immediately after high flow events 7Be measurements can augment fallout 137Cs and 210Pb to provide important erosion source information over large catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
Soil erosion on hillslopes occurs by processes of soil splash from raindrop impacts and sediment entrainment by surface water flows. This study investigates the process of soil erosion by surface water flow on a stony soil in a semiarid environment. A field experimental method was developed whereby erosion by concentrated flow could be measured in predefined flow areas without disturbing the soil surface. The method allowed for measurements in this study of flow erosion at a much wider range of slopes (2·6 to 30·1 per cent) and unit discharge rates (0·0007 to 0·007 m2 s−1) than have been previously feasible. Flow velocities were correlated to discharge and hydraulic radius, but not to slope. The lack of correlation between velocity and slope might have been due to the greater rock cover on the steeper slopes which caused the surface to be hydraulically rougher and thus counteract the expected effect of slope on flow velocity. The detachment data illustrated limitations in applying a linear hydraulic shear stress model over the entire range of the data collected. Flow detachment rates were better correlated to a power function of either shear stress (r2 = 0·51) or stream power (r2 = 0·59). Published in 1999 by John Wiley & Sons, Ltd.  相似文献   

14.
Eight runoff plots, located within a small catchment within the Walnut Gulch Experimental Watershed, southern Arizona, were constructed to test the argument that sediment yield (kg m?2) decreases as plot length increases. The plots ranged in length from 2 m to 27·78 m. Runoff and sediment loss from these plots were obtained for ten natural storm events. The pattern of sediment yield from these plots conforms to the case in which sediment yield first increases as plot length increases, but then subsequently decreases. Data from the present experiment indicate that maximum sediment yield would occur from a plot 7 m long. Analysis of both runoff and sediment yield from the plots indicates that the relationship of sediment yield to plot length derives both from the limited travel distance of individual entrained particles and from a decline in runoff coefficient as plot length increases. Particle‐size analysis of eroded sediment confirms the role of travel distance in controlling sediment yield. Whether in response to the finite travel distance of entrained particles or the relationship of runoff coefficient to plot length, the experiment clearly demonstrates that the erosion rates for hillslopes and catchments cannot be simply extrapolated from plot measurements, and that alternative methods for estimating large‐area erosion rates are required. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Sediment delivery following post-fire logging is a concern relative to water quality. While studies have assessed the effect of post-fire logging on sediment yields at different spatial scales, none have explicitly identified sediment sources. Our goal was to quantify post-fire and post-salvage logging sediment yields and use rill patterns to identify sediment sources. We measured the extent and type of logging disturbance, length of rills per unit area or “rill density”, ground cover, and sediment yields in nine logged and five control small catchments or “swales”, 0.09 to 0.81 ha, for 5 years after the 2013 Rim Fire in California's Sierra Nevada. The logged swales had a mean ground disturbance of 31%. After the first wet season following logging, there was no difference in either mean rill density (0.071 and 0.088 m m−2, respectively) or mean transformed, normalized sediment yields between the control and logged swales. Untransformed mean sediment yields across three sites ranged from 0.11–11.8 and 1.1–3.2 Mg ha−1 for the controls and salvage-logged swales, respectively. Rill density was strongly related to sediment yield and increased significantly with the amount of high-traffic skid trail disturbance in logged swales. Rill density was not significantly related to the amount of bare soil despite a significant relationship between sediment yields and bare soil. Rills usually initiated in bare soil and frequently connected high traffic skid trails to the drainage network after being diverted by waterbars. Rill connectivity and sediment yields decreased in control and logged swales where vegetation or other surface cover was high, suggesting this cover disconnected rills from the drainage network. Increasing ground cover on skid trails and between areas disturbed by post-fire logging and stream channels may reduce sediment yields as well as the hydrologic connectivity between hillslopes and the drainage network.  相似文献   

16.
Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire‐related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder‐sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris‐flow producing and flood‐producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris‐flow responses were produced without the presence of water‐repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris‐flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

17.
The distribution, transport, and accumulation of wildfire‐generated pyrogenic carbon (PyC) has important consequences for contaminant transport and carbon cycling, but a conceptual model for PyC accumulation and loss that includes geomorphic processes is lacking. In this study we quantified PyC concentration in soil samples collected from the Jemez Mountains of New Mexico before and after the 2013 Thompson Ridge (TR) fire, and developed a conceptual model describing PyC redistribution. Pre‐fire samples were fortuitously collected 4 years before the TR burn and post‐fire samples were collected at the same locations 15 months following the TR fire. Samples were collected from the O and A horizon, with sites representing a range of slope angle, aspect, burn severity, and geomorphic setting. PyC was determined by a modified chemo‐thermal oxidation method to compare PyC to total organic carbon (TOC). The mean PyC/TOC ratio was significantly higher post‐fire than pre‐fire (0.14 vs 0.12), indicating increased PyC sequestration. O horizon PyC concentrations were more variable and more responsive to fire than the A horizon. Soil horizon, watershed, and geomorphic setting proved to be the most influential factors in predicting PyC concentration changes. PyC concentrations increased most on hillslopes and in low‐severity burn areas, suggesting higher rates of PyC production or post‐fire accumulation. Burn patchiness appears to facilitate PyC accumulation, with lower severity patches trapping PyC mobilized from high severity patches. While PyC content had greater point scale variance following the fire, the fire also homogenized pre‐fire PyC differences between soil horizons and among watersheds within the burn perimeter, differences that appear to develop over time between fires. The O horizon is a larger sink for PyC in the short term following fire, but based on pre‐fire concentrations the A horizon appears to be a more stable sink for PyC. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
This Virtual Issue highlights 10 recent innovative, unconventional, or otherwise significant contributions to Earth Surface Processes and Landforms that help advance the state‐of‐the‐art in research on linkages between landslides, hillslope erosion, and landscape evolution. The selected studies address this feedback within a temporal spectrum that ranges from the event to the millennial scale, thus underscoring the importance of detailed field observations, high‐resolution digital topographic data, and geochronological methods for increasing our capability of quantifying landslide processes and hillslope erosion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Intensive agricultural land use can have detrimental effects on landscape properties, greatly accelerating soil erosion, with consequent fertility loss and reduced agricultural potential. To quantify the effects of such erosional processes on hillslope morphology and gain insight into the underlying dynamics, we use a twofold approach. First, a statistical analysis of topographical features is conducted, with a focus on slope and gradient distributions. The accelerated soil erosion is shown to be fingerprinted in the distribution tails, which provide a clear statistical signature of this human-induced land modification. Theoretical solutions are then derived for the hillslope morphology and the associated creep and runoff erosion fluxes, allowing us to distinguish between the main erosional mechanisms operating in disturbed and undisturbed areas. We focus our application on the landscape at the Calhoun Critical Zone Observatory in the US Southern Piedmont, where severe soil erosion followed intensive cotton cultivation, resulting in highly eroded and gullied hillslopes. The observed differences in hillslope morphologies in disturbed and undisturbed areas are shown to be related to the disruption of the natural balance between soil creep and runoff erosion. The relaxation time required for the disturbed hillslopes to reach a quasi-equilibrium condition is also investigated. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号