首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of sedimentation in Lake Kinneret was measured over several years by means of sediment traps, in up to seven different locations in the lake. Gross sedimentation rates measured in the sediment traps vary from about 1·5 kg m−2 a−1 in the deepest part of the lake up to 10 kg m−2 a−1 near the mouth of the upper Jordan river. The rate of sedimentation near the Jordan's inflow is highly correlated to flow discharge in the river, while in the centre of the lake the seasonal sedimentation pattern is mainly correlated to the bloom period of Peridinium gatunense. During the bloom period of Peridinium gatunense sedimentation rates all over the lake are very similar, indicating that the Peridinium is evenly distributed in the lake. The average suspended sediment discharge of the upper Jordan river flowing into the lake is 41 000 ton a−1.Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Lake sediment volume calculation is a challenging task, namely in cases when detailed drilling is complicated, expensive, or impossible, information on the pre-sedimentation surface unavailable, and record of siltation rate non-existent or too short. This study shows how waterborne, non-invasive geophysical survey, such as electrical resistivity tomography (ERT) can be very effective in acquiring the missing data, namely when combined with sound navigation ranging (SONAR) water depth measurements and supported by information from auxiliary sources. However, ERT surveying in water environment requires specific approaches, as we illustrate on the case of the Mladotice lake study. The lake was created after a landslide in May 1872, and since its formation, the depth has gradually decreased due to sedimentation. We have reconstructed the original surface, calculated the sediment volume, and compiled information on sedimentation to estimate its remaining life span. To achieve this, we measured nine waterborne ERT profiles across the lake. To reach the necessary depth, all ERT profiles were extended on land and crossed the lake using custom-built flotation pads. ERT profiling was combined with SONAR depth measurements, historical bathymetric surveys, borehole core analysis, sediment flux measurements, volumetric calculations, and water conductivity probing. The study has achieved three main results. First, practical applicability and advantages of stationary waterborne ERT profiling in combination with bathymetric sounding were demonstrated. Second, the original lake volume and accumulated sediment was calculated. We estimate that the volume of lake sediment is 187 000 m3, two-thirds of the original lake volume (over 275 000 m3). Finally, based on three volumetric data sets from 1972, 2003, and 2017, and recent monitoring of the sediment inflow, we propose scenarios of lake filling and its future development. Most interestingly, the sedimentation rate has decreased significantly in the last 20 years, suggesting that the lake may survive much longer than hitherto expected. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
This study investigates the consequences of flocculation for sediment flux in glacier‐fed Lillooet Lake, British Columbia based on density, fractal dimension, in situ profiles of sediment concentration and size distribution, and settling velocity equations presented in the literature. Sediment flux attributed to macroflocs during the late spring and summer accounts for a significant portion of sediment flux in the lake, equivalent to at least one‐quarter of the average annual sediment flux. Fine sediment is reaching the lake floor faster in flocs than occurs if settling as individual grains. This flux varies both spatially and temporally over the observation period, suggesting a link between deposition via flocculation and the properties of bottom sediments. Macrofloc flux increased through June, reached a peak during July, and then declined into August. Macrofloc flux was greatest in the distal end of the first basin, approximately 10 km from the point of inflow. Relatively high excess densities (~0·1 g cm–3 at 500 µm) for flocs in situ are consistent with a composition dominated by inorganic primary particles. Microlaminations within Lillooet Lake varves have been linked by earlier workers to discharge events, and the action of turbidity currents, emanating from the Lillooet River. While turbidity currents undoubtedly occur in Lillooet Lake, these results demonstrate flocculation as an adjunct process linking discharge, lake level, macrofloc flux, bulk density and microlaminations. In situ measurements of sediment settling velocity in glacier‐fed lakes are required to better constrain flux rates, and permit comparison between flocculation in lacustrine environments with existing studies of estuarine, marine and fluvial flocculation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
《Journal of Hydrology》2006,316(1-4):233-247
The annual water budget of Lake Tana is determined from estimates of runoff, rainfall on the lake, measured outflow and empirically determined evaporation. Simulation of lake level variation (1960–1992) has been conducted through modeling at a monthly time step. Despite the ±20% rainfall variations in the Blue Nile basin in the last 50 years, the lake level remained regular. A preliminary analysis of the sensitivity of level and outflow of the lake suggests that they are controlled more by variation in rainfall than by basin-scale forcing induced by human activities. The analysis shows that a drastic (40–45%) and sustained (7–8 years) rainfall reduction is required to change the lake from out flowing to terminal (cessation of outflow). However, the outflow from the lake shows significant variation responding to the rainfall variations. Unlike the terminal lakes in the Ethiopian rift valley or the other large lakes of Tropical Africa, at its present hydrologic condition, the Lake Tana level is less sensitive to rainfall variation and changes in catchment characteristics.  相似文献   

8.
Dam construction in the 1960s to 1980s significantly modified sediment supply from the Kenyan uplands to the lower Tana River. To assess the effect on suspended sediment fluxes of the Tana River, we monitored the sediment load at high temporal resolution for 1 year and complemented our data with historical information. The relationship between sediment concentration and water discharge was complex: at the onset of the wet season, discharge peaks resulted in high sediment concentrations and counterclockwise hysteresis, while towards the end of the wet season, a sediment exhaustion effect led to low concentrations despite the high discharge. The total sediment flux at Garissa (c. 250 km downstream of the lowermost dam) between June 2012 and June 2013 was 8.8 Mt yr‐1. Comparison of current with historical fluxes indicated that dam construction had not greatly affected the annual sediment flux. We suggest that autogenic processes, namely river bed dynamics and bank erosion, mobilized large quantities of sediments stored in the alluvial plain downstream of the dams. Observations supporting the importance of autogenic processes included the absence of measurable activities of the fall‐out radionuclides 7Be and 137Cs in the suspended sediment, the rapid lateral migration of the river course, and the seasonal changes in river cross‐section. Given the large stock of sediment in the alluvial valley of the Tana River, it may take centuries before the effect of damming shows up as a quantitative reduction in the sediment flux at Garissa. Many models relate the sediment load of rivers to catchment characteristics, thereby implicitly assuming that alterations in the catchment induce changes in the sediment load. Our research confirms that the response of an alluvial river to external disturbances such as land use or climate change is often indirect or non‐existent as autogenic processes overwhelm the changes in the input signal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Lake sediments are valuable natural archives to reconstruct paleoclimate and paleoenvironmental changes which consist of inorganic and organic sediment compounds of allochthonous origin from the catchment and of autochthonous production in the lake. However, for robust paleo-reconstructions it is important to develop a better understanding about sedimentation processes, the origin of inorganic and organic sediment compounds and their distribution within the lake. In this context, modern process studies provide important insights, although environmental and anthropological changes can affect the spatial distribution of sediment compounds through time. Therefore, in this study the spatial distribution of grain size and geochemical proxies in 52 surface sediment samples from Lake Khar Nuur, a small high-altitude lake in the Mongolian Altai with a small and anthropogenically used hydrological catchment, is investigated. The results show a distinct sediment focussing in the two deep basins of the lake, which therefore act as accumulation zones. In those accumulation zones, total organic carbon (TOC), total nitrogen (N) and their isotopic composition (δ13CTOC, δ15N) as well as n-alkanes indicate that organic sediment compounds are a mixture of both allochthonous and autochthonous origin. While the recent catchment vegetation consists of grasses/herbs and the shrub Betula nana (L.) with distinct differences in their n-alkane homologue patterns, those differences are not reflected in the sediment surface samples which rather indicates that grass-derived n-alkanes become preferentially incorporated in the lake. Extensive anthropogenic activity such as grazing and housing in the southern part of the catchment causes soil erosion which is well reflected by high TOC, N and sulphur (S) contents and 15N depleted δ15N values at the central southern shore, i.e. increased allochthonous sediment input by anthropogenically-induced soil erosion. Overall, the surface sediments of Lake Khar Nuur origin from allochthonous and autochthonous sources and are focussed in the accumulation zones of the lake, while their distribution is both environmentally and anthropogenically driven.  相似文献   

10.
The transport and yield of suspended sediment (SS) in catchments all over the world have long been topics of great interest. This paper addresses the scarcity of information on SS delivery and its environmental controls in small catchments, especially in the Atlantic region. Five steep catchments in Gipuzkoa (Basque Country) with areas between 56 and 796 km2 that drain into the Bay of Biscay were continuously monitored for precipitation, discharge and suspended sediment concentration (SSC) in their outlets from 2006 to 2013. Environmental characteristics such as elevation, slope, land‐use, soil depth and erodibility of the lithology were also calculated. The analysis included consideration of uncertainties in the SSC calibration models in the final suspended sediment yield (SSY) estimations. The total delivery of sediments from the catchments into the Bay of Biscay and its standard deviation was 272 200 ± 38 107 t yr.?1, or 151 ± 21 t km?2 yr.?1, and the SSYs ranged from 46 ± 0.48 to 217 ± 106 t km?2 yr.?1. Hydroclimatic variables and catchment areas do not explain the spatial variability found in SSY, whereas land‐use (especially non‐native plantations) and management (human impacts) appear to be the main factors that control this variability. Obtaining long‐term measurements on sediment delivery would allow for the effects of environmental and human induced changes on SS fluxes to be better detected. However, the data provided in this paper offer valuable and quantitative information that will enable decision‐makers to make more informed decisions on land management while considering the effects of the delivery of SS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Lakes are common in glaciated mountain regions and geomorphic principles suggest that lake modifications to water and sediment fluxes should affect downstream channels. Lakes in the Sawtooth Mountains, Idaho, USA, were created during glaciation and we sought to understand how and to what extent glacial morphology and lake disruption of fluxes control stream physical form and functions. First, we described downstream patterns in channel form including analyses of sediment entrainment and hydraulic geometry in one catchment with a lake. To expand on these observations and understand the role of glacial legacy, we collected data from 33 stream reaches throughout the region to compare channel form and functions among catchments with lakes, meadows (filled lakes), and no past or present lakes. Downstream hydraulic geometry relationships were weak for both the single catchment and regionally. Our data show that downstream patterns in sediment size, channel shape, sediment entrainment and channel hydraulic adjustment are explained by locations of sediment sources (hillslopes and tributaries) and sediment sinks (lakes). Stream reaches throughout the region are best differentiated by landscape position relative to lakes and meadows according to channel shape and sediment size, where outlets are wide and shallow with coarse sediment, and inlets are narrow and deep with finer sediment. Meadow outlets and lake outlets show similarities in the coarse‐sediment fraction and channel capacity, but meadow outlets have a smaller fine‐sediment fraction and nearly mobile sediment. Estimates of downstream recovery from lake effects on streams suggest 50 per cent recovery within 2–4 km downstream, but full recovery may not be reached within 20 km downstream. These results suggest that sediment sinks, such as lakes, in addition to sources, such as tributaries, are important local controls on mountain drainage networks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
贲鹏  虞邦义  张辉  胡勇 《湖泊科学》2021,33(1):289-298
为了研究洪泽湖水沙特性、变化趋势与冲淤时空分布规律,运用累积距平法、Mann-Kendall趋势与突变检验以及R/S分析法等方法,分析了洪泽湖19502016年的水沙特征;采用地理信息技术,基于1992年和2016年实测地形,对湖区泥沙冲淤空间分布进行了定量计算与分析.结果表明,入湖径流量无明显增加或减少的趋势,输沙量和含沙量呈明显减小趋势,1990年以后含沙量基本稳定在0.2 kg/m^3以下;淮河干流(包括池河)入湖水量和沙量约占入湖总量的89.6%,三河闸出湖水沙占总出湖量的60%.淮干入湖口和溧河洼为主要淤积区域,淤积量分别为2300×10^4和1900×10^4 m^3,平均淤积厚度分别为0.35和0.25 m;其他区域自然冲淤基本平衡.上游水库和河道闸坝的拦沙作用、农业种植结构变化和水土保持、大规模人工采砂等是入湖沙量减少的主要影响因素;湖区水动力特性是泥沙自然淤积主导因素,而湖区库容变化的主因则是人工采砂、围湖造田和围网养殖,且人类活动的影响远大于自然冲淤.  相似文献   

14.
It was indicated in this study that there were negative relations between the concentrations of suspended solid (SS) and transparency according to the analysis of measured data of Lake Taihu. Their relations in pervious studies were reviewed, which showed that the changes of transparency in Lake Taihu could be reflected by simulating suspended solid concentration (SSC). Measured data showed that the changes of SSC with wind speed were similar at different water depths. SSC increased with the increasing of wind speed. Both wave and lake current of Lake Taihu had positive relations with SSC. However, wave was the main factor affecting sediment suspension, while flow took the second place. In this study, a numerical model coupling lake current, wave and SSC of Lake Taihu was developed. In the SS model, the combined effects of wave and current were included. The amounts of suspended and deposited sediments near the lake bed surface layer were treated separately. The stochastic characteristics of turbulent flow pulsation near lake beds were also considered, and the start-up conditions of sediment suspension were introduced to the model. The model elucidated the mutual exchange processes between sediment particles in SS and active sediments within and on the bed surface layer. Simulated results showed that lake current had relatively significant effects on the SSC at littoral areas of Lake Taihu, while SSC at the central area of the lake was mainly influenced by wave. The changes of transparency with SSC were simulated for Lake Taihu using this model. Calculated results were validated by measured data with good fitness, which indicated that the model is basically suitable for the simulation and prediction of transparency of Lake Taihu.  相似文献   

15.
Proglacial lakes are effective sediment traps but their impact on the reliability of downstream sediment records to reconstruct glacier variability remains unclear. Here, we investigate the sedimentary signature of the recent recession of Steffen Glacier (Chilean Patagonia, 47°S) in downstream fjord sediments, with a focus on identifying the trapping (decreased downstream sediment yield) and filtering (removal of coarse particles) effectiveness of a growing intermediate proglacial lake. Four sediment cores were collected along a 14 km longitudinal transect in Steffen Fjord and the sediment physical and chemical properties were compared with aerial imagery at high temporal resolution. The caesium-137 (137Cs) chronology of the most distal core and sediment trap data suggest that sediment accumulation in the fjord remained relatively stable through time, despite the accelerating glacier recession and the growth of Steffen proglacial lake. This is in contrast with many studies that indicate a decrease in sediment yield during proglacial lake expansion. It implies that the increase in sediment export due to accelerating meltwater production may be balanced by the sediment trapping effect of the growing proglacial lake. The fjord sediments show a slight fining upward accompanied by a marked decrease in flood-induced grain-size peaks, most likely due to the increasing filtering and dampening effect of the expanding proglacial lake. Our findings show that the filtering effect of the proglacial lake reached a threshold in 1985, when the lake attained an area of 2.02 km2. The additional 5 km of glacier recession during the following 32 years did not have any significant impact on downstream sedimentation. This study confirms that proglacial lakes act as sediment traps but it indicates that (1) the trapping effect can be outpaced by accelerating glacier recession and (2) the filtering effect becomes stable once the lake attains a certain critical size. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
洞庭湖冲淤变化分析(1956-1995年)   总被引:23,自引:1,他引:22  
施修端  夏薇  杨彬 《湖泊科学》1999,11(3):199-205
根据1956-1995年洞庭湖水文泥沙原型观测和地形测绘等翔实资料,运用输沙量法和地形法对洞庭湖冲瘀变化进行了认真的统计分析,分析结果表明,洞庭湖来水量以四水为主,占57.8%,来沙量以四口为主,多年平均沉积率为74.0%,出湖仅占26.0%;淤积量及湖水沙量随着四分流分沙比的减少而减少。  相似文献   

17.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
G. Richards  R. D. Moore 《水文研究》2003,17(9):1733-1753
This study examined suspended sediment concentration (SSC) during the ablation seasons of 2000 and 2001 in Place Creek, Canada, a steep, glacier‐fed mountain stream. Comparison of stream flow in Place Creek with that in an adjacent, almost unglacierized catchment provided a rational basis for separating the ablation seasons into nival, nival–glacial, glacial and autumn recession subseasons. Distinct groupings of points in plots of electrical conductivity against discharge supported the validity of the subseasonal divisions in terms of varying hydrological conditions. Relationships between SSC and discharge (Q) varied between the two study seasons, and between subseasons. Hysteresis in the SSC–Q relationship was evident at both event and weekly time‐scales. Some suspended sediment released from pro‐glacial Place Lake (the source of Place Creek) appeared to be lost to channel storage at low flows, especially early in the ablation season, with re‐entrainment at higher flows. Multiple regression models were derived for the subseasons using predictor variables including Q, Q2, the change in Q over the previous 3 h, cumulative discharge over the ablation season, total precipitation over the previous 24 h and SSC measured at 1500 hours as an index value for each day. The models produced adjusted R2 values ranging from 0·71 to 0·91, and provided tentative insights into the differences in SSC dynamics amongst subseasons. Introduction of the index value of SSC significantly improved the model fit during the nival–glacial and glacial subseasons for both years, as it adjusts the model to the current condition of sediment supply. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Outburst floods from glacier‐dammed lakes are major events associated with glacier thinning and volume reduction. This paper investigates jökulhlaups emanating from the glacier‐dammed lake Øvre Messingmalmvatn at Rundvassbreen, an outlet glacier of the Blåmannsisen ice cap in northern Norway. Since 2001, the lake has several times been observed to drain suddenly, causing jökulhlaup outbursts into the pro‐glacial lake Rundvatnet. Varve analysis and lead‐210 (210Pb) dating were used to date sediment cores taken from Rundvatnet. It was found that sedimentation from jökulhlaups is recognizable in the lake as distinct sand layers embedded in the varved silt‐clay sequence which represents the normal lake sedimentation. Sand fractions were carried in suspension because of the extreme hydraulic conditions of jökulhlaups. The thickest sand layer was deposited during the 2001 jökulhlaup which lasted three days and had a total volume of 40 ×106 m3. Jökulhlaups were also recorded in 2005, 2007, 2009, and 2010; they each resulted in a sand layer. Annual sediment accumulation in Rundvatnet increased up to 10‐fold during the years with jökulhlaup outburst floods, from a normal value of 1–2 mm yr?1 to 8–10 mm yr?1. Five other jökulhlaups were identified from the 1910–1930 sedimentation interval, in addition to those observed in 2001–2010; there appear to have been none for 70 years during 1931–2000. Each jökulhlaup was preceded by a period when the glacier thinned to a critical volume and could no longer withstand the hydrostatic pressure of Øvre Messingmalmvatn; consequently a tunnel developed beneath the glacier, leading to a jökulhlaup. Statistical analyses of the correlations between the pro‐glacial sedimentation rate and temperature and precipitation suggested that although climate conditions are expected to influence sedimentation in the pro‐glacial catchment, a host of other interacting factors moderate the availability and delivery of sediment to the pro‐glacial system, making the processes responsible for changes in pro‐glacial sedimentation to remain uncertain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Suspended sediment is the primary source for a sustainable agro‐ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality–monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号