首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Average pool spacing between five and seven bankfull widths has been documented in environments throughout the world, but has limited theoretical justification in coarse‐bedded and bedrock environments. Pool formation in coarse‐bedded and bedrock channels has been attributed to bedrock and boulder constrictions. Because the spacing of these constrictions may be irregular in nature, it is difficult to reconcile pool‐formation processes with the supposedly rhythmic spacing of pools and riffles. To address these issues, a simulation model for pool and riffle formation is used to demonstrate that semi‐rhythmic spacing of pools with an approximate spacing of five to seven bankfull widths can be recreated from a random distribution of obstructions and minimum pool‐ and riffle‐length criteria. It is assumed that a pool–riffle couplet will achieve a minimum length based on dominant‐discharge conditions. Values for the minimum‐length assumption are based on field data collected in New England and California, while the theoretical basis relies on the demonstrated hydraulic response of individual pools to elongation. Results from the simulations show that the location of pools can be primarily random in character, but still assume an average spacing between four and eight bankfull widths for a variety of conditions. Field verification data generally support the model but highlight a highly skewed distribution of pool‐forming elements and pool spacing. The relation between pool spacing and bankfull widths is attributed to the common geometric response of these features to dominant‐discharge conditions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A better understanding of bedrock incision mechanisms and processes is essential to the study of long‐term landscape evolution. Yet, little is known about flow dynamics in bedrock rivers, limiting our ability to make realistic predictions of local bedrock incision rates. A recent investigation of flow through bedrock canyons of the Fraser River revealed that plunging flows, defined by the downward‐directed movement of near surface flow toward the channel bed, occur in channels that have low width‐to‐depth ratios. Plunging flows occur into deep scour pools, which are often coincident with lateral constrictions and channel spanning submerged ridges (sills). A phenomenological investigation was undertaken to reproduce the flow fields observed in the Fraser canyons and to explore morphological controls on the occurrence and relative strength of plunging flow in bedrock canyons. Our observations show that the plunging flow structure can be produced along a scour pool entrance slope by accelerating the flow at the canyon entrance either over submerged sills or through lateral constrictions. Plunging flow appears to be a function of convective deceleration into a scour pool which can be enhanced by sill height, the amount of the channel width that is constricted, pool entrance slope, discharge, and a reduction in channel width‐to‐depth ratio. Plunging flow greatly enhances the potential for incision to occur along the channel bed and is an extreme departure from the assumptions of steady, uniform flow in bedrock incision models, highlighting the need for improved formulations that account for fluid flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Studies on pool morphologies include reports of over 80% or 90% of pools being associated with structural controls and large obstructions that include boulders, bedrock outcrops and large woody debris (LWD). A Monte Carlo simulation approach and developmental computer model was created to predict pool formation, spacing and the percentage length covered by pools, riffles, scour holes and runs based on input data that include channel slope, width, the number of small and large boulders, and the number of 10–30 cm, 30–60 cm and >60 cm pieces of wood. The statistical‐empirical model is founded on the idea that boulders, bedrock outcrops and large woody debris provide a physical framework that then controls local water‐surface slopes, velocity patterns and the locations of pools and riffles. The spacing values of individual types and sizes of obstructions are modeled as log‐normal distributions with separate distributions for each obstruction type. Pools are assigned different probabilities of development depending on the obstruction type. Pool and riffle lengths used to create the subsequent morphology follow their own slope‐dependent, log‐normal trends. A minimum distance develops between successive pools because of the backwater and turbulent conditions needed for pool formation. The total number and spacing of pools, riffles and scour holes thus reflects the number and locations of obstructions and characteristics of the pool–riffle couplet. The simulation model accurately captures the number of pools in the modeled data range at 65% of all the verification field sites, and 86% of the verification field sites with a more limited range of width and slope characteristics. Lower levels of prediction capabilities are associated with modeled numbers of scour holes and log jams. The model accurately mimics some statistical attributes of pool spacing, and future versions of the model could be developed to improve overall predictive capabilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
An Erratum has been published for this article in Earth Surface Processes and Landforms 28(13) 2003, 1491. Granite domes, boulders and knobs buried within saprolite have been detected beneath lateritic weathering landsurfaces using 2D electrical resistivity tomography (ERT). This technique provides a valuable means of mapping the bedrock topography and the regolith structures underneath landsurfaces, as it is intrinsically very sensitive to the electrical properties of superimposed pedological, hydrological and geological layers, allowing the determination of their relative geometry and spatial relationships. For instance, 2D inverse electrical resistivity models including topographic data permit the de?nition of lithostratigraphic cross‐sections. It shows that resistive layers, such as the more or less hardened ferruginous horizons and/or the bedrock, are generally well differentiated from poorly resistive layers, such as saprolite, including water‐saturated lenses, as has been corroborated by past and actual borehole observations. The analysis of the 2D geometrical relations between the weathering front, i.e. the bedrock topography, and the erosion surface, i.e. the landsurface topography, documents the weathering and erosion processes governing the development of the landforms and the underlying structures, thus allowing the etching hypothesis to be tested. The in?ltration waters are diverted by bedrock protrusions, which behave as structural thresholds compartmentalizing the saprolite domain, and also the regolith water table, into distinct perched saturated subdomains. The diverted waters are thus accumulated in bedrock troughs, which behave like underground channels where the saprolite production rate may be enhanced, provided that the water drainage is ef?cient. If the landsurface topography controls the runoff dynamics, the actual bedrock topography as depicted by ERT imaging in?uences the hydrodynamics beneath the landsurface. In some way, this may control the actual weathering rate and the shaping of bedrock protrusions as granite domes and knobs within thick saprolite, before their eventual future exposure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Quantifying the topography of rivers and their associated bedforms has been a fundamental concern of fluvial geomorphology for decades. Such data, acquired at high temporal and spatial resolutions, are increasingly in demand for process‐oriented investigations of flow hydraulics, sediment dynamics and in‐stream habitat. In these riverine environments, the most challenging region for topographic measurement is the wetted, submerged channel. Generally, dry bed topography and submerged bathymetry are measured using different methods and technology. This adds to the costs, logistical challenges and data processing requirements of comprehensive river surveys. However, some technologies are capable of measuring the submerged topography. Through‐water photogrammetry and bathymetric LiDAR are capable of reasonably accurate measurements of channel beds in clear water. While the cost of bathymetric LiDAR remains high and its resolution relatively coarse, the recent developments in photogrammetry using Structure from Motion (SfM) algorithms promise a fundamental shift in the accessibility of topographic data for a wide range of settings. Here we present results demonstrating the potential of so called SfM‐photogrammetry for quantifying both exposed and submerged fluvial topography at the mesohabitat scale. We show that imagery acquired from a rotary‐winged Unmanned Aerial System (UAS) can be processed in order to produce digital elevation models (DEMs) with hyperspatial resolutions (c. 0.02 m) for two different river systems over channel lengths of 50–100 m. Errors in submerged areas range from 0.016 m to 0.089 m, which can be reduced to between 0.008 m and 0.053 m with the application of a simple refraction correction. This work therefore demonstrates the potential of UAS platforms and SfM‐photogrammetry as a single technique for surveying fluvial topography at the mesoscale (defined as lengths of channel from c.10 m to a few hundred metres). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The upper New River basin of the southern Appalachian Mountains, a major tributary of the modern Ohio River, represents the unglaciated headwaters of the Tertiary Teays River system of eastern North America. Dating of relict fluvial gravels have suggested that New River incision may be outpacing lowering of the surrounding uplands, but physical evidence of transient topographic disequilibrium has yet to be identified. We use focused topographic analysis of the upper New River basin to delineate a perched, low‐relief paleo‐landscape that is experiencing transgressive dissection due to incision by the New River and its tributaries. Accelerated incision has decoupled hillslopes from the drainage network, generating knickpoints which represent the boundary between remnants of the paleo‐landscape and actively adjusting topography downstream. Steepening of hillslopes downstream of knickpoints suggests dynamic headward migration which, along with knickpoint occurrence throughout the drainage network, is inconsistent with the development of fixed stream profile convexities atop strike‐extensive geologic contacts. In the absence of tectonic forcing, we favor a climatically‐forced drop in external base level as driver of the incision pattern we observe. Plio‐Pleistocene glacial damming and diversion of the Teays River to form the modern Ohio River lowered regional base level for the study area, potentially forcing the paleo‐landscape developed during the Teays era to adjust to the modern drainage pattern. The upper New River may therefore represent the potential for glacially‐driven drainage rearrangement to drive transient topographic evolution hundreds of kilometers away from the ice margin, long after the disappearance of ice sheets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Theoretical calculations indicate that elastic stresses induced by surface topography may be large enough in some landscapes to fracture rocks, which in turn could influence slope stability, erosion rates, and bedrock hydrologic properties. These calculations typically have involved idealized topographic profiles, with few direct comparisons of predicted topographic stresses and observed fractures at specific field sites. We use a numerical model to calculate the stresses induced by measured topographic profiles and compare the calculated stress field with fractures observed in shallow boreholes. The model uses a boundary element method to calculate the stress distribution beneath an arbitrary topographic profile in the presence of ambient tectonic stress. When applied to a topographic profile across the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania, the model predicts where shear fractures would occur based on a Mohr–Coulomb criterion, with considerable differences in profiles of stresses with depth beneath ridgetops and valley floors. We calculate the minimum cohesion required to prevent shear failure, Cmin, as a proxy for the potential for fracturing or reactivation of existing fractures. We compare depth profiles of Cmin with structural analyses of image logs from four boreholes located on the valley floor, and find that fracture abundance declines sharply with depth in the uppermost 15 m of the bedrock, consistent with the modeled profile of Cmin. In contrast, Cmin increases with depth at comparable depths below ridgetops, suggesting that ridgetop fracture abundance patterns may differ if topographic stresses are indeed important. Thus, the present results are consistent with the hypothesis that topography can influence subsurface rock fracture patterns and provide a basis for further observational tests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Despite significant advances over the past decades, our understanding of drumlin formation and associated ice‐bed processes is still incomplete. In this paper, we present the integrated use of geomorphological, sedimentological and geophysical techniques as a powerful means to force a breakthrough towards solving the drumlin enigma. We report on investigations of the anatomy of the Pigeon Point drumlin, Clew Bay, Ireland. We found that the bulk of the landform, which displays a classical drumlin shape, consists of silty‐clayey diamicton showing evidence of deformation, hydrofracturing and comminution. The unit is interpreted as a sub‐glacial traction till/comminution till. The thin unit overlying this basal till consists of silty‐sandy diamicton, and is interpreted as a para‐glacially modified melt‐out till. The partly cemented third unit consists of stratified, massive to graded sands and gravels. Its contact with the sub‐glacial traction till consists of a series of concave shapes, which suggests that it was deposited in meltwater channels that flowed in sub‐glacial cavities and that cut laterally into the drumlin. We propose that highs in the undulating rockhead relief, as shown in the seismic profile, have provided nuclei which initiated drumlin formation. This idea is supported by the observation of local detached bedrock slabs that grade upwards into a comminution till. In the long profile, very high normalized induced polarization (IP) values form a wedge‐shape, which is interpreted as a set of conjugate thrusts, or a ‘pop‐up’ structure. The structure is positioned directly above one of the undulations in the bedrock, suggesting a direct relationship. The high values are thought to reflect the presence of pre‐existing clays, which were sheared into the till, thus forming linings in the thrust features. It is concluded that glacitectonic processes, notably differential bedrock weathering and thrusting, have played a key role in the formation of this drumlin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Estimating recent patterns of erosion and rock uplift within Cenozoic orogens has proven difficult as signals of these processes have been obfuscated by Plio‐Pleistocene glaciation. The topography of many mountain ranges integrates the effects of long‐lived rock uplift, Late‐Cenozoic climate variation, and post‐glacial landscape adjustment. In this study, we employ a suite of topographic analyses to study the relief of an active mountain range on a sub‐catchment scale in an effort to the separate the long‐term signal of rock uplift from perturbations due to shorter‐lived climate signals. We focus on the Olympic Mountains, USA, where patterns of exhumation and glaciation have been previously estimated; however, our methods and results are broadly applicable to other orogens. Our analysis shows that Plio‐Pleistocene alpine glaciers and the Cordilleran Ice Sheet have reduced the elevations of channel profiles and created anomalously low channel relief in the Olympic Mountains. Large low‐gradient areas formed at lower elevations where ice sheets were present and alpine glaciers widened and deepened valleys. In the more rugged core of the range, near‐threshold hillslopes along the margins of the oversteepened glacially‐carved valleys, dominate the range. This implies a strong Plio‐Pleistocene glacial climate control on the topography over the more recent evolution of the Olympic Mountains. However, the broad relief structure of the range appears to still record the regional rock uplift pattern and is suggestive of an east‐plunging antiform, consistent with folding of the subducting plate or underplating of accreted rocks. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
In this article we craft process‐specific algorithms that capture climate control of hillslope evolution in order to elucidate the legacy of past climate on present critical zone architecture and topography. Models of hillslope evolution traditionally comprise rock detachment into the mobile layer, mobile regolith transport, and a channel incision or aggradation boundary condition. We extend this system into the deep critical zone by considering a weathering damage zone below the mobile regolith in which rock strength is diminished; the degree of damage conditions the rate of mobile regolith production. We first discuss generic damage profiles in which appropriate length and damage scales govern profile shapes, and examine their dependence upon exhumation rate. We then introduce climate control through the example of rock damage by frost‐generated crack growth. We augment existing frost cracking models by incorporating damage rate limitations for long transport distances for water to the freezing front. Finally we link the frost cracking damage model, a mobile regolith production rule in which rock entrainment is conditioned by the damage state of the rock, and a frost creep transport model, to examine the evolution of an interfluve under oscillating climate. Aspect‐related differences in mean annual surface temperatures result in differences in bedrock damage rate and mobile regolith transport efficiency, which in turn lead to asymmetries in critical zone architecture and hillslope form (divide migration). In a quasi‐steady state hillslope, the lowering rate is uniform, and the damage profile is better developed on north‐facing slopes where the frost damage process is most intense. Because the residence times of mobile regolith and weathered bedrock in such landscapes are on the order of 10 to 100 ka, climate cycles over similar timescales result in modulation of transport and damage efficiencies. These lead to temporal variation in mobile regolith thickness, and to corresponding changes in sediment delivery to bounding streams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In de‐glaciated areas, para‐glaciation (i.e. the conditioning of landscapes by prior glaciation) has often been considered a major predisposing factor in landslide occurrence; its consequences have been particularly well identified at a fine scale (especially on bedrock jointing). Hitherto, the relative impacts of para‐glaciation on hillslope dynamics at a regional scale had nevertheless not been quantified statistically. We examine Skagafjörður area (northern Iceland) where landslides are widespread (at least 108 were mapped in an area of c. 3000 km2). We compare the role of para‐glaciation (debuttressing, influence of post‐glacial rebound) with that of classic factors (topography, lithology, etc.) in landslide occurrence and location, using a spatial analysis based on a chi‐square test. On the one hand, the results highlight that landslides are over‐represented in areas where post‐glacial rebound was at its maximum, with a stronger concentration of landslides in the northern part of the fjord. On the other hand, the distribution of landslides did not show any clear relationship with the pattern of glacial debuttressing. Tschuprow coefficient highlights that the influence of post‐glacial rebound on landslide location is higher than the combined influence of slope gradient, curvature or geological structure. This result is supported by our initial evidence for the timing of landslides in the area: most landslides occurred during the first half of the Holocene, and a period of hillslope instability was initiated when the post‐glacial uplift was at its maximum. Finally, the mechanisms that link post‐glacial rebound and landsliding as well as the geomorphic impacts of landslides, are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The barrier islands that fringe the western shore of the Outer Hebrides are globally unusual in that they are developed on a planated bedrock (strandflat) surface. They also contain the most extensive area of machair (a distinctive vegetated sandy plain) in the British Isles. This paper presents the first investigation of the internal structure and morphology of these barrier islands and investigates the controls on their structure. The barriers form extensive (300-1000 metres wide) but thin (1.5-2 m) surficial deposits typically resting on bedrock. In areas where depressions exist in the bedrock, and where sediment supply permits, transgressive dunes underlie the machair. A distinctive machair facies of sub-horizontal, undulating reflections, which are laterally continuous over tens of metres is the dominant component of the barriers at each site. This reflects episodic deposition of windblown sand up to the level of the water table. Thereafter any additional sand is transported through the system to accumulate in topographic lows as lake fills, or on topographic highs as ‘high machair’. Eight radar facies were identified, the extent and presence of which vary between the study sites. Bedrock topography and sediment supply are interpreted as the dominant controls on variability in barrier structure. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
Between a.d. 2006 and 2008, we completed annual surveys of two mercury‐contaminated eroding banks, one forested and the other grass covered, along the gravel‐bed, bedrock South River in Virginia. Gridded digital terrain models with a resolution of 0·05 m were created from bank topography data collected using a terrestrial laser scanner. Model comparisons indicate that the forested bank retreated nearly 1 m around two leaning trees, while elsewhere the extent of bank retreat was negligible. On the grassy bank, retreat was controlled by the creation of small overhanging clumps of turf at the top of the bank, their occasional failure, and the ultimate removal of failed debris from the bank toe. Partial autocorrelation analysis of vertically integrated bank retreat demonstrates that bank profile erosion is virtually uncorrelated at horizontal distances greater than about 1 m on both banks, a length scale of approximately half the bank height. This extensive streamwise variability suggests that widely spaced profile data cannot adequately represent bank erosion at these sites. Additional analysis of our comprehensive spatial data also indicates that traditional bank profile surveys with any spacing greater than 1 m would result in measurement errors exceeding 10%, an important conclusion for assessing annual rates of mercury loading into the South River from bank erosion. Our results suggest that three‐dimensional gridded bare‐earth models of bank topography may be required to accurately measure annual bank retreat in similar river systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Megagrooves are kilometre‐scale linear topographic lows carved in bedrock, separated by ridges, typically in areas of largely devoid of till. They have been reported from several areas covered by Pleistocene glaciations, such as Canadian Northwest (NW) Territories, Michigan and NW Scotland. Here we report two previously undocumented megagroove fields from Ungava, Canada, and northern England, and present new analyses of the megagrooves from NW Scotland. This paper seeks to determine the nature of the lithological and structural controls on the occurrence and formation of megagrooves. Analysis of both geomorphological and bedrock properties shows that megagrooves are generally:
  1. confined to well stratified or layered bedrock, such as (meta)sedimentary rocks with closely spaced joints, and tend not to occur on massive rocks such as gneiss or granite, or thick‐bedded sedimentary rocks;
  2. subparallel to palaeo‐ice flow and the strike of the strata; and tend not to occur where palaeo‐ice flow is at high angles to the strike of strata;
  3. produced by significant glacial erosion by sustained unidirectional ice flow.
Detailed analysis of megagrooves in NW Scotland shows that neither glacio‐fluvial erosion, nor differential abrasion was the dominant mechanism of formation. A mechanism, here termed ‘lateral plucking’, is suggested that involves block plucking on rock steps parallel to ice flow. Removal of joint‐bounded blocks from such rock steps involves a component of rotation along a vertical axis. Block removal may be enhanced by a direct component of shear stress onto the vertical stoss sides. The lateral plucking mechanism results in horizontal erosion at right angles to the ice flow, and enhances the groove/ridge topography. Megagrooves are potentially useful as palaeo‐ice flow indicators in areas devoid of till, and can thus complement the palaeo‐ice stream datasets which are presently largely based on soft‐sediment landform studies. British Geological Survey © NERC 2011  相似文献   

16.
The underlying pre‐existing paleotopography directly influences the loess deposition process and shapes the morphology of current loess landforms. An understanding of the controlling effects of the underlying paleotopography on loess deposition is critical to revealing the mechanism of loess‐landform formation. However, these controlling effects exhibit spatial variation as well as uncertainty, depending on a study's data sources, methodologies and particular research scope. In this study, the geological history of a study area in the Loess Plateau of China that is subject to severe soil erosion is investigated using detailed geological information and digital elevation models (DEMs), and an underlying paleotopographic model of the area is constructed. Based on the models of modern terrain and paleotopography, we introduce a watershed hierarchy method to investigate the spatial variation of the loess‐landform inheritance relationship and reveal the loess deposition process over different scales of drainage. The landform inheritance relationships were characterized using a terrain‐relief change index (TRCI) and a bedrock terrain controllability index (BTCI). The results show that the TRCI appears to have an inverse relationship with increasing research scope, indicating that, compared with the paleotopography of the region, modern terrain has lower topographic relief over the entire area, while it has higher topographic relief in the smaller, local areas. The BTCI strengthens with increasing drainage area, which demonstrates a strong controlling effect over the entire study area, but a weak effect in the smaller, local areas because of the effect of paleotopography on modern terrain. The results provide for an understanding of the spatial variation of loess deposition in relation to paleotopography and contribute to the development of a process‐based loess‐landform evolution model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This study investigates how catchment properties influence low-flow dynamics. With 496 synthetic models composed of a bedrock and an alluvial aquifer, we systematically assess the impact of the hydraulic conductivity of both lithologies, of the hillslope and of the river slope on catchment dynamics. The physically based hydrogeological simulator HydroGeoSphere is employed, which allows obtaining a range of low-flow indicators. The hydraulic conductivity of the bedrock Kbedrock, a proxy for transmissivity, is the only catchment property exerting an overall control on low flows and explains 60% of the variance of Q95/Q50. The difference in dynamics of catchments with same Kbedrock depends on hillslope gradients and the alluvial aquifer properties. The buffering capacity of the bedrock is mainly related to Kbedrock and the hillslope gradient. We thus propose the dimensionless bedrock productivity index (BPI) that combines these characteristics with the mean net precipitation. For bedrock only models, the BPI explains 82% of the variance of the ratio of Q95 to mean net precipitation. The alluvial aquifer can significantly influence low flows when the bedrock productivity is limited. Although our synthetic catchment setup is simple, it is far more complex than the available analytical approaches or conceptual hydrological models. The direct application of the results to existing catchments requires nevertheless careful consideration of the local geological topographic and climatic conditions. This study provides quantitative insight into the complex interrelations between geology, topography and low-flow dynamics and challenges previous studies which neglect or oversimplify geological characteristics in the assessment of low flows.  相似文献   

18.
Soil moisture plays an important role in hydrology. Understanding factors (such as topography, vegetation, and meteorological conditions) that influence spatio‐temporal variability in soil moisture, and how this influence is manifested, is important for understanding hydrological processes. A number of distributed (quasi‐)physical hydrological models have been developed to investigate this subject. Previous studies have shown that the spatial differences in the distribution of soil types (residual and colluvial soils) dominantly reflect spatio‐temporal fluctuations in soil moisture and runoff. We present a methodology for assessing the spatial distribution of residual and colluvial soils, which differ with respect to their physical characteristics, in a 0·88 km2 forested catchment with complex topography and a complex land‐use history. Our method is based on penetration resistance profile data; in this data set, each data point represents soil physical characteristics within an area of about 25 m2. If the spatial distribution of soils under similar meteorological, geological, historical land use, and other conditions could be characterized on the basis of similarity in topographic features, then the spatial distribution of soil could be predicted based on relationships between various topographic indices (e.g. topographic index and local slope). We tested whether our model correctly assessed the reference data. The model's results were 90·5% correct for residual soils and 87·3% correct for colluvial soils. Further studies will quantify the relationships between topographic features of land covered by residual and colluvial soils and changes in spatio‐temporal variations in the catchment (e.g. vegetation and land use) as a function of geology or meteorology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号