首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Denudation rates of small tributary valleys in the upper Rhone valley of the Swiss Central Alps vary by more than an order of magnitude within a very small distance (tens of kilometers). Morphometric data indicate two distinct erosion processes operate in these steep mountain valleys. We determined the rates of these processes using cosmogenic beryllium‐10 (10Be) in pooled soil and stream sediment samples. Denudation in deep, glacially scoured valleys is characterized by rapid, non‐uniform processes, such as debris flows and rock falls. In these steep valleys denudation rates are 760–2100 mm kyr?1. In those basins which show minimal previous glacial modification denudation rates are low with 60–560 mm kyr?1. The denudation rate in each basin represents a binary mixture between the rapid, non‐uniform processes, and soil creep. The soil production rate measured with cosmogenic 10Be in soil samples averages at 60 mm kyr?1. Mixing calculations suggest that the debris flows and rock falls are occurring at rates up to 3000–7000 mm kyr?1. These very high rates occur in the absence of baselevel lowering, since the tributaries drain into the Rhone trunk stream up‐stream of a knickzone. The flux‐weighted spatial average of denudation rates for the upper Rhone valley is 1400 mm kyr?1, which is similar to rock uplift rates determined in this area from leveling. The pace and location of erosion processes are determined by the oscillation between a glacial and a non‐glacial state, preventing the landscape from reaching equilibrium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Escarpments are prominent morphological features along high-elevation passive margins. Recent studies integrating geomorphology, thermochronology, and cosmogenic nuclide-based denudation rate estimates suggest a rapid phase of denudation immediately after the earliest stages of seafloor spreading, and subsequent slow denudation rates since. To constrain the geomorphic evolution of passive margins, we have examined the development of the Sri Lankan escarpment. Cosmogenic nuclide data on river sediment along a north–south transect across the southern escarpment reveal that the landscape is eroding ten times more rapidly in the escarpment zone (26 to 71 mm kyr 1) than in the high-elevation plateau above it and in the lowland plain beneath it (2.6 to 6.2 mm kyr 1). Unlike these low denudation rate areas, the escarpment denudation is strongly and linearly hill slope-dependent. This shows that denudation and retreat are tightly interlinked within the escarpment, which suggests that the escarpment is evolving by rift-parallel retreat, rather than by escarpment downwearing. Supporting evidence is provided by the morphology of rivers draining the escarpment zone. These have steep bedrock channels which show sharp and prominent knickpoints along their longitudinal profiles. It appears that fluvial processes are driving escarpment retreat, as rivers migrate headwards were they incise into the high-elevation plateau. However, the average catchment-wide denudation rates of the escarpment zone are low compared to the denudation rates that are estimated for constant escarpment retreat since rifting. In common with other escarpments worldwide, causes for this slow down can be tectonic change related to flexural bending of the lithosphere, climate change that would vary the degree of precipitation focused into the escarpment, or the decrease in the contributing catchment area, which would reduce the stream power available for fluvial erosion.  相似文献   

3.
Short‐term (contemporary) and long‐term denudation rates were determined for the Blue Mountains Plateau in the western Sydney Basin, Australia, to explore the role of extreme events (wildfires and catastrophic floods) in landscape denudation along a passive plate margin. Contemporary denudation rates were reconstructed using 40 years of river sediment load data from the Nattai catchment in the south‐west of the basin, combined with an analysis of hillslope erosion following recent wildfires. Long‐term denudation rates (10 kyr–10 Myr) were determined from terrestrial cosmogenic nuclides, apatite fission track thermochronology and post‐basalt flow valley incision. Contemporary denudation rates average several times lower than the long‐term average (5·5 ± 4 mm kyr?1 versus 21·5 ± 7 mm kyr?1). Erosion of sediment following wildfires accounts for only a small proportion (5%) of the contemporary rate. Most post‐fire sediment is stored on the lower slopes and valley floor, with the amount transported to the river network dependent on rainfall–run‐off conditions within the first few years following the fire. Historical catastrophic floods account for a much larger proportion (35%) of the contemporary erosion rate, and highlight the importance of these events in reworking stored material. Evidence for palaeofloods much larger than those experienced over the past 200 years suggests even greater sediment export potential. Mass movement on hillslopes along valleys incised into softer lithology appears to be a dominant erosion process that supplies substantial volumes of material to the valley floor. It is possible that a combination of infrequent mass movement events and high fluvial discharge could account for a significant proportion of the discrepancy between the contemporary and long‐term denudation rates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A steep escarpment edge, deep gorges and distinct knickzones in river profiles characterize the landscape on the Western Escarpment of the Andes between ~5°S and ~18°S (northern Peru to northern Chile). Strong north–south and east–west precipitation gradients are exploited in order to determine how climate affects denudation rates in three river basins spanning an otherwise relatively uniform geologic and geomorphologic setting. Late Miocene tectonics uplifted the Meseta/Altiplano plateau (~3000 m a.s.l.), which is underlain by a series of Tertiary volcanic‐volcanoclastic rocks. Streams on this plateau remain graded to the Late Miocene base level. Below the rim of the Meseta, streams have responded to this ramp uplift by incising deeply into fractured Mesozoic rocks via a series of steep, headward retreating knickzones that grade to the present‐day base level defined by the Pacific Ocean. It is found that the Tertiary units on the plateau function as cap‐rocks, which aid in the parallel retreat of the sharp escarpment edge and upper knickzone tips. 10Be‐derived catchment denudation rates of the Rio Piura (5°S), Rio Pisco (13°S) and Rio Lluta (18°S) average ~10 mm ky?1 on the Meseta/Altiplano, irrespective of precipitation rates; whereas, downstream of the escarpment edge, denudation rates range from 10 mm ky?1 to 250 mm ky?1 and correlate positively with precipitation rates, but show no strong correlation with hillslope angles or channel steepness. These relationships are explained by the presence of a cap‐rock and climate‐driven fluvial incision that steepens hillslopes to near‐threshold conditions. Since escarpment retreat and the precipitation pattern were established at least in the Miocene, it is speculated that the present‐day distribution of morphology and denudation rates has probably remained largely unchanged during the past several millions of years as the knickzones have propagated headward into the plateau. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The tectonically stable central highlands of Sri Lanka and its alluvial valleys are the source areas and sinks, respectively, for one of the most prolific Quaternary gemstone provinces in the world. However, the known 10Be/26Al cosmogenic‐nuclide‐determined low natural (preanthropogenic) denudation rates of 2–11 mm kyr?1, and resulting sediment fluxes, are grossly inadequate to deliver the vast throughputs of overburden required to concentrate the known gemstone deposits. Basin‐wide, unstable, slow‐moving channelized landslides and debris flows, aided by biotic factors, are the dominant mechanisms of mass‐wasting on hill‐slopes and bulk delivery of sediment to the alluvial valleys and fluvial networks. Channelization ensures modulated sediment transfer and run‐out during an erosional–depositional continuum. In a selected inventory of landslides, mobilized sediment volumes ranged from less than 1000 cubic metres to a maximum of ~800 000 cubic metres per event. Monsoonal rainfall (both cumulative seasonal and total daily thresholds) is the primary external factor, which interacts with colluvium thickness and steep slopes in triggering landslides. There are three to five ‘threshold’ rainfall events per year in the highlands that can be expected to generate landslides. They can occur under conditions of decreasing daily rainfall as the seasonal total rainfall increases. GIS databases show a very significant spatial overlap and direct causal linkage between several hundred landslide occurrences and the innumerable gem pits and mines in the catchments of the best known mining region of Sri Lanka. Landslide‐associated mass movements, besides providing significant numbers of gemstones to the alluvial valleys over time, are also a fundamental factor in the geomorphic evolution of the rugged central highland landscape. Rainfall‐driven landslide activity may be a natural geological response affecting erosional equilibrium in high‐relief tectonically stable terrains. Climatically forced base level changes will, over time, control sediment storage, removal or reworking in the valleys. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The Serra do Mar escarpment, located along the southeastern coast of Brazil, is a high‐elevation passive margin escarpment. This escarpment evolved from the denudation of granites, migmatites and gneisses. The granites outcrop in the form of a ridge along the escarpment crest, due to its differential erosion (‘sugarloaf’ hills) from the surrounding lithologies. Several studies suggest that the passive margin escarpments are actively retreating toward the interior of the continent. However, no prior study has calculated the long‐term denudation rates of Serra do Mar to test this hypothesis. In this study, we measured the in situ‐produced 10Be concentration in fluvial sediments to quantify the catchment‐wide long‐term denudation rates of the Serra do Mar escarpment in southern Brazil. We sampled the fluvial sediments from ten watersheds that drain both sides of the escarpment. The average long‐term denudation rate of the oceanic side is between 2.1‐ and 2.6‐fold higher than the rate of the continental side: 26.04 ± 1.88 mm ka‐1 (integrating over between 15.8 ka‐1 and 46.6 ka‐1) and 11.10 ± 0.37 mm ka‐1 (integrating over between 52.9 ka‐1 and 85.4 ka‐1), respectively. These rates indicate that the coastal base level is controlling the escarpment retreat toward the continental high lands, which is consistent with observations made at other high‐elevation passive margins around the globe. The results also demonstrate the differential erosion along the Serra do Mar escarpment in southern Brazil during the Quaternary, where drainages over granites had lower average denudation rates in comparison with those over migmatites and gneisses. Moreover, the results demonstrate that the ocean‐facing catchments have been eroded more intensely than those facing the continent. The results also reveal that drainage over the granites decreases the average denudation rates of the ocean‐facing catchments and the ‘sugarloaf’ hills therefore are natural barriers that slowly retreat once they are exhumed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Mesas are ubiquitous landforms in arid and semiarid regions and are often characterized by horizontal stratified erodible rocks capped by more resistant strata. The accepted conceptual model for mesa evolution and degradation considers reduction in the width of the mesa flat‐top plateau due to cliff retreat but ignores possible denudation of the mesa flat‐top and the rates and mechanism of erosion. In this study we examine mesas in the northeastern hyperarid Negev Desert where they appear in various sizes and morphologies and represent different stages of mesa evolution. The variety of mesas within a single climatic zone allows examination of the process of mesa evolution through time. Two of the four sites examined are characterized by a relatively wide (200–230 m) flat‐top and a thick caprock whereas the other two are characterized by a much narrower remnant flat‐top (several meters) and thinner caprock. We use the concentration of the cosmogenic nuclide 10Be for: (a) determining the chronology of the various geomorphic features associated with the mesa; and (b) understanding geomorphic processes forming the mesa. The 10Be data, combined with field observations, suggest a correlation between the width of flat‐top mesa and the denudation and cliff retreat rates. Our results demonstrate that: (a) cliff retreat rates decrease with decreasing width of the flat‐top mesa; (b) vertical denudation rates increase with decreasing width of the flat‐top mesa below a critical value (~60 m, for the Negev Desert); (c) the reduction in the width of the flat‐top mesa is driven mainly by cliff retreat accompanied by extremely slow vertical denudation rate which can persist for a very long time (>106 Ma); and (d) when the width of the mesa decreases below a certain threshold, its rate of denudation increases dramatically and mesa degradation is completed in a short time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Relief generation in non‐glaciated regions is largely controlled by river incision into bedrock but datable fluvial terraces that allow quantifying incision rates are not always present. Here we suggest a new method to determine river incision rates in regions where low‐relief surfaces are dissected by streams. The approach consists of three steps and requires the 10Be concentrations of a stream sediment sample and a regolith sample from the low‐relief surface. In the first step, the spatial distribution of 10Be surface concentrations in the given catchment is modelled by assuming that denudation rates are controlled by the local hillslope angles. The slope–denudation rate relation for this catchment is then quantified by adjusting the relation between slope angle and denudation rate until the average 10Be concentration in the model is equal to the one measured in the stream sediment sample. In the second step, curved swath profiles are used to measure hillslope angles adjacent to the main river channel. Third, the mean slope angle derived from these swath profiles and the slope–denudation relation are used to quantify the river incision rate (assuming that the incision rate equals the denudation rate on adjacent hillslopes). We apply our approach to two study areas in southern Tibet and central Europe (Black Forest). In both regions, local 10Be denudation rates on flat parts of the incised low‐relief surface are lower than catchment‐wide denudation rates. As the latter integrate across the entire landscape, river incision rates must exceed these spatially averaged denudation rates. Our approach yields river incision rates between ~15 and ~30 m/Ma for the Tibetan study area and incision rates of ~70 to ~100 m/Ma in the Black Forest. Taking the lowering of the low‐relief surfaces into account suggests that relief in the two study areas increases at rates of 10–20 and 40–70 m/Ma, respectively. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Stone forest (‘Shilin’ in Chinese) is a unique karst landform with a complex evolution process. Based mainly on the characteristics and interrelationships of sub‐soil, soil and sub‐aerial erosion in Lunan karst area, the authors develop a triplex erosion model to describe the evolution of stone forest, and apply it to examine the current development stage and the prospect of the Lunan Stone Forest. The study shows that sub‐soil corrosion, a basic driving force for the vertical scope of a stone forest, usually occurs within 10 m below ground surface but is observed to be most active within the top 2 m, which constitutes the best development zone for stone forest. Under modern climatic conditions, the tip of the stone pillars in Lunan karst area is lowering at a rate of 10·4 mm ka?1, whereas the base of the stone pillars is deepening at 26·17 mm ka?1. Therefore, the height of stone pillars is increasing at a rate of 15·77 mm ka?1. Considering that soil erosion in the study area is as high as 650 mm ka?1, the visible height of the stone forest is actually increasing at a rate of 639·6 mm ka?1. However, the best evolution time for Lunan Stone Forest has already passed despite the fact that it is still growing taller at the present time. This is because the soil layer, which plays an extremely significant role in the heightening of stone pillars, is rapidly thinning at a rate of 623·83 mm ka?1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre‐fire rates. The maximum unit‐area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1. Recovery to pre‐fire conditions seems to have occurred by 2000 because for a maximum 30‐min rainfall intensity of 50 mm h?1, the unit‐area peak discharge in 1997 was 6.6 m3 s?1 km?2, while in 2000 a similar intensity produced only 0.11 m3 s?1 km?2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200‐fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

12.
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The majority of the world's mangrove forests occur on mostly mineral sediments of fluvial origin. Two perspectives exist on the biogeomorphic development of these forests, i.e. that mangroves are opportunistic, with forest development primarily driven by physical processes, or alternatively that biophysical feedbacks strongly influence sedimentation and resulting geomorphology. On the Firth of Thames coast, New Zealand, we evaluate these two possible scenarios for sediment accumulation and forest development using high‐resolution sedimentary records and a detailed chronology of mangrove‐forest (Avicennia marina) development since the 1950s. Cores were collected along a shore‐normal transect of known elevation relative to mean sea level (MSL). Activities for lead‐210 (210Pb), caesium‐137 (137Cs) and beryllium‐7 (7Be), and sediment properties were analysed, with 210Pb sediment accumulation rates (SARs), compensated for deep subsidence (~8 mm yr?1) used as a proxy for elevation gain. At least four phases of forest development since the 1950s are recognized. An old‐growth forest developed by the late‐1970s with more recent seaward forest expansion thereafter. Excess 210Pb profiles from the old‐growth forest exhibit relatively low SARs near the top (7–12 mm yr?1) and bottom (10–22 mm yr?1) of cores, separated by an interval of higher SARs (33–100 mm yr?1). A general trend of increasing SAR over time characterizes the recent forest. Biogeomorphic evolution of the system is more complex than simple mudflat accretion/progradation and mangrove‐forest expansion. Surface‐elevation gain in the old‐growth forest displays an asymptotic trajectory, with a secondary depocentre developing on the seaward mudflat from the mid‐1970s. Two‐ to ten‐fold increases in 210Pb SARs are unambiguously large and occurred years to decades before seedling recruitment, demonstrating that mangroves do not measurably enhance sedimentation over annual to decadal timescales. This suggests that mangrove‐forest development is largely dependent on physical processes, with forests occupying mudflats once they reach a suitable elevation in the intertidal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The processes involved in the development of high‐altitude, low‐relief areas (HLAs) are still poorly understood. Although cosmogenic nuclides have provided insights into the evolution of HLAs interpreted as paleo‐surfaces, most studies focus on estimating how slowly they erode and thereby their relative stability. To understand actual development processes of HLAs, we applied several techniques of cosmogenic nuclides in the Daegwanryeong Plateau, a well‐known HLA in the Korean Peninsula. Our denudation data from strath terraces, riverine sediments, soils, and tors provide the following conclusions: (1) bedrock incision rate in the plateau (~127 m Myr?1) is controlled by the incision rate of the western part of the Korean Peninsula, and is similar to the catchment‐wide denudation rate of the plateau (~93 m Myr?1); (2) the soil production function we observed shows weak depth dependency that may result from highly weathered bedrock coupled with frequent frost action driven by alpine climate; (3) a discrepancy between the soil production and catchment‐wide denudation rates implies morphological disequilibrium in the plateau; (4) the tors once regarded as fossil landforms of the Tertiary do not reflect Tertiary processes; and (5) when compared with those of global paleo‐surfaces (<20 m Myr?1), our rapid denudation rates suggest that the plateau cannot have maintained its probable initial paleo landscape, and thus is not a paleo‐surface. Our data contribute to understanding the surface processes of actively eroding upland landscapes as well as call into question conventional interpretations of supposed paleo‐surfaces around the world. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We quantify erosion rates in the higher sectors of the Huasco Valley, in the Main Cordillera of the semi‐arid Andes of Chile, using elevation differences between three successive geomorphic markers (pediments and paleo‐valleys) and the present day valley. Available Ar‐Ar ages of Neogene pediments are used to estimate mean erosion rates for the three periods (16 to 13 My, 13 to 8 My, and following 8 My). The landscape of the Huasco Valley is in a transient state, as indicated by well‐preserved pediment surfaces in interfluves, valleys deeply incised by fluvial and glacial erosion and scarped head‐valleys that represent the current knickzones. Higher erosion rates (45–75 m/My) are calculated for the more recent period (< 8 My) during which deep incision developed compared to previous periods (6–31 m/My). Quantitative data indicate that glaciers had a much higher erosional capability than fluvial activity in the higher sectors of the Main Cordillera. Comparison with erosion rates calculated in other drainage basins of the Chilean Andes suggests that the variability of erosion rates depends on the landscape's transient erosive state. The landscape's geomorphologic response to the uplift of the Main Cordillera results in the retreat of a knickzone, for which retreat velocity depends on precipitation rate pattern and glacial erosion intensity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The Gediz (Ala?ehir) Graben is located in the highly tectonically active and seismogenic region of Western Turkey. The rivers upstream of the normal fault‐bounded graben each contain a non‐lithologic knickpoint, including those that drain through inferred fault segment boundaries. Knickpoint heights measured vertically from the fault scale with footwall relief and documented fault throw (vertical displacement). Consequently, we deduce these knickpoints were initiated by an increase in slip rate on the basin‐bounding fault, driven by linkage of the three main fault segments of the high‐angle graben bounding fault array. Fault interaction theory and ratios of channel steepness suggest that the slip rate enhancement factor on linkage was a factor of 3. We combine this information with geomorphic and structural constraints to estimate that linkage took place between 0.6 Ma and 1 Ma. Calculated pre‐ and post‐linkage throw rates are 0.6 and 2 mm/yr respectively. Maximum knickpoint retreat rates upstream of the faults range from 4.5 to 28 mm/yr, faster than for similar catchments upstream of normal faults in the Central Apennines and the Hatay Graben of Turkey, and implying a fluvial landscape response time of 1.6 to 2.7 Myr. We explore the relative controls of drainage area and precipitation on these retreat rates, and conclude that while climate variation and fault throw rate partially explain the variations seen, lithology remains a potentially important but poorly characterised variable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We report erosion rates and processes, determined from in situ‐produced beryllium‐10 (10Be) and aluminum‐26 (26Al), across a soil‐mantled landscape of Arnhem Land, northern Australia. Soil production rates peak under a soil thickness of about 35 cm and we observe no soil thicknesses between exposed bedrock and this thickness. These results thus quantify a well‐defined ‘humped’ soil‐production function, in contrast to functions reported for other landscapes. We compare this function to a previously reported exponential decline of soil production rates with increasing soil thickness across the passive margin exposed in the Bega Valley, south‐eastern Australia, and found remarkable similarities in rates. The critical difference in this work was that the Arnhem Land landscapes were either bedrock or mantled with soils greater than about 35 cm deep, with peak soil production rates of about 20 m/Ma under 35–40 cm of soil, thus supporting previous theory and modeling results for a humped soil production function. We also show how coupling point‐specific with catchment‐averaged erosion rate measurements lead to a better understanding of landscape denudation. Specifically, we report a nested sampling scheme where we quantify average erosion rates from the first‐order, upland catchments to the main, sixth‐order channel of Tin Camp Creek. The low (~5 m/Ma) rates from the main channel sediments reflect contributions from the slowly eroding stony highlands, while the channels draining our study area reflect local soil production rates (~10 m/Ma off the rocky ridge; ~20 m/Ma from the soil mantled regions). Quantifying such rates and processes help determine spatial variations of soil thickness as well as helping to predict the sustainability of the Earth's soil resource under different erosional regimes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The Mediterranean domain is characterized by a specific climate resulting from the close interplay between atmospheric and marine processes and strongly differentiated regional topographies. Corsica Island, a mountainous area located in the western part of the Mediterranean Sea is particularly suitable to quantify regional denudation rates in the framework of a source‐to‐sink approach. Indeed, fluvial sedimentation in East‐Corsica margin is almost exclusively limited to its alluvial plain and offshore domain and its basement is mainly constituted of quartz‐rich crystalline rocks allowing cosmogenic nuclide 10Be measurements. In this paper, Holocene denudation rates of catchments from the eastern part of the island of Corsica are quantified relying on in situ produced 10Be concentrations in stream sediments and interpreted in an approach including quantitative geomorphology, rock strength measurement (with a Schmidt Hammer) and vegetation cover distribution. Calculated denudation rates range from 15 to 95 mm ka‐1. When compared with rates from similar geomorphic domains experiencing a different climate setting, such as the foreland of the northern European Alps, they appear quite low and temporally stable. At the first order, they better correlate with rock strength and vegetation cover than with morphometric indexes. Spatial distribution of the vegetation is controlled by morpho‐climatic parameters including sun exposure and the direction of the main wet wind, so‐called ‘Libecciu’. This distribution, as well as the basement rock strength seems to play a significant role in the denudation distribution. We thus suggest that the landscape reached a geomorphic steady‐state due to the specific Mediterranean climate and that Holocene denudation rates are mainly sustained by weathering processes, through the amount of regolith formation, rather than being transport‐limited. Al/K measurements used as a proxy to infer present‐day catchment‐wide chemical weathering patterns might support this assumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号