首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Besides generating seismic waves, which eventually dissipate, an earthquake also generates a static displacement field everywhere within the Earth. This global displacement field rearranges the Earth’s mass thereby causing the Earth’s rotation and gravitational field to change. The size of this change depends upon the magnitude, focal mechanism, and location of the earthquake. The Sumatran earthquake of December 26, 2004 is the largest earthquake to have occurred since the 1960 Chilean earthquake. Using a spherical, layered Earth model, the coseismic effect of the Sumatran earthquake upon the Earth’s length-of-day, polar motion, and low-degree harmonic coefficients of the gravitational field are computed. Using a model of the earthquake source that is composed of five subevents having a total moment-magnitude M w of 9.3, it is found that this earthquake should have caused the length-of-day to decrease by 6.8 microseconds, the position of the Earth’s generalized figure axis to shift 2.32 milliarcseconds towards 127° E longitude, the Earth’s oblateness J 2 to decrease by 2.37 × 10−11 and the Earth’s pear-shapedness J 3 to decrease by 0.63 × 10−11. The predicted change in the length-of-day, position of the generalized figure axis, and J 3 are probably not detectable by current measurement systems. But the predicted change in oblateness is perhaps detectable if other effects, such as those of the atmosphere, oceans, and continental water storage, can be adequately removed from the observations.  相似文献   

2.
Microseismic records from five broadband IRIS stations located at distances of 1000–2000 km from the earthquake source are studied. Unordinary programs are used to extract hidden periodicities, determine signal coherence at different stations, and reveal asymmetry in wave amplitudes. The records obtained at a few stations 60 h before the Sumatra earthquake include periodic oscillations in the range of periods from 20 to 60 min that arose after the McQuary earthquake and continued for about 24 h. Synchronization of waves recorded at all stations commenced 53 h before the Sumatra earthquake and continued up to the time of the earthquake, with the predominant period gradually increasing from a few minutes to tens of minutes.  相似文献   

3.
An interpretation of the occurrence conditions and source parameters is proposed for the catastrophic earthquake of December 26, 2004, in the northwestern part of the Sunda island arc. The interpretation is based on the analysis of spatial distributions of aftershock epicenters and regions subjected to destructive tsunamis, seismicity manifestations in the NW part of the Sunda island arc in the past century, and locations of large tsunami sources of historical earthquakes off the Sumatra Island coast. The source parameters of the December 26, 2004, earthquake are compared with the reliably established main characteristics of sources of the largest tsunamigenic earthquakes in island arcs of the Pacific Ocean. According to the proposed interpretation, the December 26, 2004, earthquake source is a steep reverse fault striking NW and dipping toward the Indian Ocean. The source, ~450 km long, is located in front of the NW termination of Sumatra Island, in the southern part of the Nicobar Islands. Possible positions and sizes of large potential seismic sources in the NW part of the Sunda island arc are suggested.  相似文献   

4.
Forced and free oscillations of water level were recorded in the YuZ-5 well, Kamchatka due to the passage of seismic waves from the Sumatra-Andaman earthquake of December 26, 2004, M w = 9.3, hypocentral distance 8250 km. The greatest amplitude of water level oscillations, at least 5 cm, was observed during the onset of seismic surface waves with a typical period of 20–50 s. The total duration of the forced and free water level oscillations was about ten hours. The available theoretical models that describe oscillations of water level in a well due to seismic waves and rapid injection of water were used to estimate the transmissivity of the aquifer. The values obtained exceed by at least two orders of magnitude the transmissivity derived from pumping test measurements. A hypothesis was proposed to explain the temporary increase in aquifer transmissivity during the passage of seismic waves by invoking disturbances in the structure of the crack-pore space and a sharp increase in aquifer rock permeability.  相似文献   

5.
苏门答腊—安达曼MW9.1级地震的破裂过程持续了大约500秒,这一时间几乎是一般情况下用于计算远震辐射能量的P到时和PP到时之间时间窗长度的两倍。为了测量整个地震所辐射的P波,我们将时间窗扩展为从P波到时到S波到时,并用扩展窗对震中距大于60°的台站的地震记录进行分析。这些持续时间8~10分钟的窗内包含了PP,PPP,ScP震相和其他一些多次反射震相。为了测量包含这些附加震相的影响,我们计算了由扩展窗(P波到时和S波到时之间)得到的震源谱和由标准窗(P波到时和PP波到时之间)得到的震源谱的比值。对扩展窗的分析是在假设它只包含P-pP-sP波群的情况下进行的。我们分析了发生在MW9.1级主震附近具有相似深度和震源机制的4个相对较小的地震事件。这些地震的震级范围从2005年1月9日的MW6.0级余震到震中位于苏门答腊-安达曼地震南部的2005年3月28日MW8.6级的尼亚斯地震。将得到的这4个地震事件的震源谱比值取平均,就得到扩展窗的频变算子。然后对扩展窗得到的2004年12月26日主震的震源谱进行校正,就得到苏门答腊-安达曼地震整个破裂过程(~600秒)的完整的或校正的震源谱。我们计算的地震辐射总能量为1.4×1017J。经过对整个地震的校正震源谱与破裂过程的前~250秒的震源谱(由标准远震窗得到)比较,我们发现主震破裂过程的前半部分辐射的地震波能量多于破裂过程后半部分辐射能量,尤其对于周期从3秒到40秒的地震波,这种现象更加明显。  相似文献   

6.
Introduction The unexpected December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake, which caused devastating tsunami around the Indian Ocean, reminds seis-mologists of the difficulty of earthquake forecast and/or prediction. For seismologists this earth-quake is almost completely unexpected, because there was neither forecasting (which means the estimation of the future earthquake rate as a function of location, time, and magnitude) nor predic-tion (forecasti…  相似文献   

7.
The observations of subionospheric VLF waves from the Australian VLF transmitter NWC (frequency=19.8 kHz) at the Japanese receiving stations Chofu, Chiba and Kochi have been utilized to identify a possible precursor of ionospheric perturbations to the huge Sumatra earthquake of 26 December 2004. The VLF amplitude data at Japanese stations have indicated the depression in amplitude and also the enhancement in nighttime amplitude fluctuation before the earthquake. The nighttime fluctuation is composed of wave-like structures, and the wavelet analysis and cross-correlation analyses have been performed for those fluctuations. A significant enhancement in the fluctuation spectra in the period 20–30 min to ∼100 min (the frequency range of atmospheric gravity waves) is observed only before the earthquake. Then, the wave-like structures tend to propagate from the NWC–Kochi path to NWC–Chiba path with the time delay of ∼2 h, and so the wave propagation speed is estimated as ∼20 m/s. This finding might be important when we think of lithosphere–ionosphere coupling mechanism.  相似文献   

8.
对于2004年12月26日印度洋大地震,成都地震遥测台网有宽频带数字地震记录波形没有出格,测定的面波震级为9.0。这对于通常人们认为面波震级超过8.6可能出现饱和是一个值得注意和研究的现象。  相似文献   

9.
The interpretation of the nature and parameters of the source for the earthquake that occurred in Sumatra on December 26, 2004 is suggested. Our study relies on a variety of data on the geological structure of the region, long-term seismicity, spatial distribution of the foreshocks and aftershocks, and focal mechanisms; and the pattern of shaking and tsunami, regularities in the occurrence of the earthquakes, and the genetic relationship between the seismic and geological parameters inherent in various types of seismogenic zones including island arcs. The source of the Sumatran earthquake is a steep reverse fault striking parallel to the island arc and dipping towards the ocean. The length of the fault is ~450 km, and its probable bedding depth is ~70–100 km. The magnitude of this seismic event corresponding to the length of its source is 8.9–9.0. The vertical displacement in the source probably reached 9–13 m. The fault is located near the inner boundary of the Aceh Depression between the epicenter of the earthquake and the northern tip of the depression. The strike-slip and strike-slip reverse the faults cutting the island arc form the northern and southern borders of the source. The location and source parameters in the suggested interpretation account quite well for the observed pattern of shaking and tsunami. The Aceh Depression and its environs probably also host other seismic sources in the form of large reverse faults. The Sumatran earthquake, which was the culmination of the seismogenic activation of the Andaman-Sumatra island arc in the beginning of XXI century, is a typical tsunamigenic island-arc earthquake. By its characteristics, this event is an analogue to the M W = 9 Kamchatka earthquake of November 4, 1952. The spatial distribution of the epicenters and the focal mechanisms of the aftershocks indicate that the repeated shocks during the Sumatran event were caused by the activation of a complex system of geological structures in various parts of the island arc and Andaman Sea instead of the slips on a single rupture (a subduction thrust about 1200–1300 km in length).  相似文献   

10.
本文选取2004年12月26日发生在印度尼西亚西北近海、震中位于巽他海沟的东侧的MW9.0地震的余震分布空间范围为研究区域,分析了该区域震源机制,并利用震源机制和构造应力场的一致性参数a进行了地震检验。研究结果表明,MW≥7.5地震之前,都有参数a降低的现象,MW9.0地震前,a值都有动荡起伏的情况。该研究区长达数千千米,而连续发生的MW≥5.0地震的震源机制与构造应力场一致,应当不是随机现象,似可视为具某种前兆意义的现象。  相似文献   

11.
The M w=9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that caused widespread damage in coastal areas and left more than 226,000 people dead or missing. The Sumatra tsunami was accurately recorded by a large number of tide gauges throughout the world's oceans. This paper examines the amplitudes, frequencies and wave train structure of tsunami waves recorded by tide gauges located more than 20,000 km from the source area along the Pacific and Atlantic coasts of North America.  相似文献   

12.
A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.  相似文献   

13.
Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, M W=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earthquake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the M W=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes. Foundation item: Ministry of Science and Technology Project (2004CB418406). Contribution No. 05FE3010, Institute of Geophysics, China Earthquake Administration.  相似文献   

14.
分析总结了印尼苏门答腊西8.7级地震的几个特点:(1)板缘特大地震;(2)引发海啸,受灾范围特别大,成灾的瞬间突发性却不如内陆地震明显;(3)在远处出现“湖面波动”等同震现象突出;(4)震前全球地震活动出现异常图像;(5)安达曼弧一带与川滇地区强震活动存在相关性。并由此提出了:尽快加紧地震海啸预警机制研究及其技术系统的建立;加强地震预测预警机制研究;要重点研究川滇地区的地震危险性;强化防震减灾科普宣传等建议。  相似文献   

15.
The December 26, 2004 Sumatra-Andaman earthquake that registered a moment magnitude (Mw) of 9.1 was one of the largest earthquakes in the world since 1900. The devastating tsunami that resulted from this earthquake caused more casualties than any previously reported tsunami. The number of fatalities and missing persons in the most seriously affected countries were Indonesia - 167,736, Sri Lanka - 35,322, India - 18,045 and Thailand - 8,212. This paper describes two field visits to assess tsunami effects in Sri Lanka by a combined team of Japanese and Sri Lankan researchers. The first field visit from December 30, 2004 – January 04, 2005 covered the western and southern coasts of Sri Lanka including the cities of Moratuwa, Beruwala, Bentota, Pereliya, Hikkaduwa, Galle, Talpe, Matara, Tangalla and Hambantota. The objectives of the first field visit were to investigate the damage caused by the tsunami and to obtain eyewitness information about wave arrival times. The second field visit from March 10–18, 2005 covered the eastern and southern coasts of Sri Lanka and included Trincomalee, Batticaloa, Arugam Bay, Yala National Park and Kirinda. The objectives of the second visit were mainly to obtain eyewitness information about wave arrival times and inundation data, and to take relevant measurements using GPS instruments.  相似文献   

16.
Within the era of modern digital-recording, the December 26th 2004 Sumatra–Andaman Earthquake represents an event of unprecedented scale. Hydroacoustic observations have made significant contributions toward our understanding of this great rupture and serve to reiterate the potential use of tertiary (T) waves as a tool in tsunami warning. Small-aperture arrays of hydrophones operated by the International Monitoring System (IMS) recorded the seismically generated, water-borne T-wave within the Indian Ocean. Due to the velocity structure of the oceanic water column, T-wave propagation is both slower and more efficient than radiation within the solid earth. This results in a relatively large amplitude signal that arrives within a time window distinct from the more complex and overlapping pattern of solid earth seismic phases. Hydroacoustic analysis has constrained the rupture length of the fault to be ~1,200 km and the duration on the order of 8 min, with 2–3 phases exhibiting progressively decreasing rupture velocity. These data also indicate that aftershock rates in the first hours following the mainshock correlate with spatial variability in the sourced T-wave amplitude, with far fewer events along the northern section of the main rupture. Although IMS stations telemeter data in near real time, data access for scientists was restricted due to the provisions of the Comprehensive Test Ban Treaty. The swift dissemination of data will be critical in using hydroacoustic methods to assess the magnitude and tsunamigenic potential of future events.  相似文献   

17.
18.
The integral characteristics of source geometry, source duration, and rupture propagation for the Sumatra-Andaman earthquake of December 26, 2004 and for the March 28, 2005 earthquake near northern Sumatra have been determined. The source parameters were found by analyzing records of the higher orbits of long-period surface waves. The results are compared with the large-scale average characteristics of tomographic models for the source process based on different data sets that diverge in some details, as well as with the aftershock distribution for the considered earthquakes.  相似文献   

19.
本文对2004年12月26日印尼苏门答腊以西发生MW9.0级地震后所做的地震趋势预测做了反思,指出:关于全球特大地震近年可能连发,特大地震对几年内世界7级以上地震年频度没有明显影响,但未来几年内7级以上强震可能集中在这次特大地震附近或相关构造上的预测意见是正确的;而有关近年中国大陆及川滇地区可能发生7级强震的预测是错误的;并认为,2001年昆仑山口西8.1级地震释放了已积累的应变可能是这次特大地震不能触发中国大陆及川滇地区发生强震的重要原因。  相似文献   

20.
Xu Jie 《中国地震研究》2006,20(1):101-107
The Indonesian region is one of the most seismically active zones on the earth. On December 26, 2004, an M_S 8.7 earthquake (as measured by the China Seismograph Network, or M_w = 9.3 as measured by USGS) struck the west coast of northern Sumatra, Indonesia. By its magnitude it is classified as the world's fourth largest earthquake since 1900 and the largest one since the 1964 Alaska earthquake. The spatial distribution of the relocation of larger aftershocks (M>4.5) following the main shock suggests a length and width of the rupture of about 1200km and 200km, respectively. The shock triggered massive tsunamis that affected several countries throughout South and Southeast Asia. It is a shallow interplate event of thrust type in the trench. Its epicenter is located at the northwestern end of the Indonesia-Melanesia plate boundary tectonic zone. In 2004, eight shocks of M≥7.0 occurred in this area, showing a migration from east to west. It implies that these shocks represent a correlated and consistent dynamic process along this subduction zone. These interplate events are associated with convergence of several plates and their fast motion in this region, which result in strong and complex structures and deformation. The India-Australia plate is underthrusting toward the Sunda continental block or Burma plate at a low angle, producing a great locked area on the shallow portion of the subduction zone where enormous strain is accumulated. Interseismic uplift recorded by coral growth and horizontal velocities measured by GPS show the geometry of the locked portion of the Sumatra subduction zone. The vertical and horizontal data reasonably match with a model in which the plate interface is fully locked over a significant width. This locked fault zone extends to a horizontal distance of 132km from the trench, which corresponds to a depth of 50km. The sudden ruptures and large-scale slip of this locked area as a release of stress occurred, are the direct cause of the M8.7 earthquake near Indonesia in 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号