首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
利用一个相对简单的等粘度模型 ,探讨了板块运动的热效应及其对于观测热流的形成与分布的作用 .结果表明 ,运动的板块确实对地幔内部的温度场有实质性影响 ,观测到的大洋中脊处的高热流在很大程度上可归因于板块激发的地幔流动的热效应  相似文献   

2.
华北地区上地幔温度及岩石圈厚度分布研究   总被引:2,自引:2,他引:0       下载免费PDF全文
杨嵩  熊熊  郑勇  单斌 《地球物理学报》2013,56(11):3855-3867
上地幔温度是控制地幔流变性和动力学过程的关键参数之一.本文利用高分辨率S波地震层析成像速度结果,基于岩石温度与地震波速度的关系,研究了华北地区上地幔50~300 km深度范围内的温度分布和"热"岩石圈厚度.为了验证结果的可靠性,本文用计算的上地幔60 km深度处的温度作为底面约束,得到了相应的地表热流.计算地表热流与观测地表热流之间符合程度较好,相对误差大部分都在地表热流观测误差范围之内.通过对上地幔的温度分布进行分析,我们研究发现:(1)在上地幔浅部,温度与地表构造之间有很好的对应关系.在小于170 km的深度上,温度呈现东高西低的分布态势.温度较高的区域集中在东部的河淮盆地、渤海湾盆地、华北平原和中部陆块的交界处、西部鄂尔多斯高原北缘的银川―河套地堑以及阴山地区,同时,这些地区的岩石圈厚度也相应较薄,大约为80~100 km;(2)西部的鄂尔多斯高原是整个华北地区岩石圈地幔温度最低的地区,比东部地区低200~400 ℃,岩石圈厚度相应最厚,平均岩石圈厚度达到140~150 km,最厚处超过160 km.(3)在170 km以下的软流圈地幔部分,温度分布发生反转,西部温度高于东部,表明东、西部陆块在地质历史时期经历了不同的深部地幔动力学过程.  相似文献   

3.
观测到的板块运动包含两种能量分布几乎相等的运动形态:极型场和环型场.纯粹的由热驱动的地幔自由对流不能预期和解释环型运动的产生.本文提出地幔混合对流理论,既考虑了热驱动的自由对流,也考虑了由板块自身激发的强迫对流.根据板块处于动力学平衡状态的观测事实,建立了相应的模型.数值结果表明,根据混合对流模型所预期的板块速度场,既能产生极型场,也能产生环型场,而且在空间分布特征及功率谱分布上与观测资料符合相当好.地幔物质的上升流动基本和洋脊对应,而下降流动和俯冲带对应.  相似文献   

4.
观测到的板块运动包含两种能量分布几乎相等的运动形态:极型场和环型场.纯粹的由热驱动的地幔自由对流不能预期和解释环型运动的产生.本文提出地幔混合对流理论,既考虑了热驱动的自由对流,也考虑了由板块自身激发的强迫对流.根据板块处于动力学平衡状态的观测事实,建立了相应的模型.数值结果表明,根据混合对流模型所预期的板块速度场,既能产生极型场,也能产生环型场,而且在空间分布特征及功率谱分布上与观测资料符合相当好.地幔物质的上升流动基本和洋脊对应,而下降流动和俯冲带对应.  相似文献   

5.
热幔柱构造与地核热能   总被引:5,自引:0,他引:5  
地核内部的压力和温度比以前人们的设想高得多。地核加热部分下地幔使之在地幔中升起形成热幔柱。有些热幔柱穿岩石圈在地表形成热点,其余热幔柱消溶在上地幔形成热室。这是上地幔在结构和温度上不均匀的原因,也是激发控制全球变化的头等重要因素。  相似文献   

6.
华南陆缘是我国重要的矿产、地热资源区.晚中生代以来,在太平洋板块西向俯冲,地幔热对流活动共同作用下,该区出现多期岩浆-热事件和大规模爆发式成矿作用.在前人研究基础上,本文利用地表热流观测资料、地震剪切波资料、重力位球谐系数,计算了壳-幔温度结构,分析了动力学背景.计算结果表明:华南陆缘东南沿海地带,地壳10 km以浅温度达200℃以上,居里点温度475℃,莫霍面平均温度550℃.地壳浅层较热,花岗岩中放射性元素衰变放热是地壳浅层地下水热活动的重要热源,但地壳总体温度不高,为"冷壳热幔"型热结构.地幔中,90 km深度,温度950~1250℃;120 km深度,温度1050~1400℃;150 km深度,温度1200~1450℃;220 km深度,温度1500~1700℃."热"岩石圈底界深度在110~150 km之间,西深东浅.岩石圈内,地幔应力场为挤压-伸展相间格局;岩石圈之下,地幔应力场为一个以南昌为中心、长轴NE-SW向的椭圆.分析认为,晚中生代以来,太平洋板块的西向俯冲,导致华南陆缘在区域性SE向地幔对流背景上叠加局域性不稳定热扰动,在175~85Ma期间,上地幔物质向上流动,形成不同的岩浆活动高峰期.同时,岩石圈地幔受俯冲洋壳流体的影响,含水量高,黏度小,在地幔流切向应力场作用下,岩石圈底界由西向东"波浪"状减薄.现今岩石圈之下仍具备地幔小尺度热对流温度条件,但除地表浅层外,地壳整体温度不高,岩石圈构造稳定.  相似文献   

7.
中国及其邻区地球三维结构初始模型的建立   总被引:53,自引:9,他引:53       下载免费PDF全文
对人工地震测深及天然地震面波体波三维层折反演数据进行统一处理,建立了中国及其邻区地球三维结构初始模型.此模型图像表明,中国及其邻区地球各圈层横向变化明显.岩石圈及软流圈内速度分布主要反映这一区域自古生代以来板块及地块拼合模式.各主要板块或地块(塔里木、扬子、中朝、青藏、哈萨克斯坦、印度、印度支那)岩石圈增厚或有很深的地慢根,板块或地块间的造山带岩石圈减薄,软流圈速度降低。下地幔底部及核幔边界D″层出现高速异常,表明古太平洋及古特提斯洋俯冲板块因重力坍塌已进入地球深层,形成亚洲超级下降地幔柱。这一下降地幔柱引起地球表层物质向中亚、东亚地区集中,印度半岛、青藏高原、新疆、蒙古至贝加尔一带,成为全球岩石圈最大的汇聚场所.  相似文献   

8.
青藏高原东北缘岩石圈三维密度结构   总被引:5,自引:3,他引:2       下载免费PDF全文
王新胜  方剑  许厚泽 《地球物理学报》2013,56(11):3770-3778
综合重力观测资料和地震波走时资料反演了青藏高原东北缘岩石圈三维密度结构,并对该区岩石圈结构及动力学特征进行了讨论.首先利用收集到的P波近震和远震走时数据进行地震层析成像,得到研究区岩石圈三维P波速度结构.然后利用速度-密度经验关系式,将速度扰动转化为密度扰动建立研究区三维初始密度模型.最后利用分离的布格重力异常反演得到了岩石圈三维密度结构.反演结果表明:青藏高原东北缘地壳密度结构特征有利于地震孕育发生和地壳物质侧向流动;地壳内,密度异常等值线走向与地表断裂走向基本一致,进入地幔后,密度异常等值线走向发生了顺时针旋转,这表明青藏高原东北缘地壳和地幔具有不同的构造运动模式,暗示该区可能发生了壳幔解耦;80~100 km深度上,P波速度异常较密度异常明显偏低,推测该区可能发生了部分熔融或者岩石含水量的增加;印度板块俯冲和周围坚硬块体阻挡联合作用,使得青藏高原东北缘形成了强大的区域构造应力场,并导致深部软流圈热物质上涌,为该区壳幔解耦、部分熔融和P波速度降低创造了条件.  相似文献   

9.
地幔对流的数值模拟及其与表面观测的关系   总被引:9,自引:3,他引:9       下载免费PDF全文
本文从基本的热对流方程出发,并结合地幔对流特点,特别考虑到自重及非线性影响,探讨地幔对流及其与表面观测的关系,发展了相应的数值方法.结果表明,计算得到的长波大地水准面、地表地形、板块速度场水平散度与观测值符合程度较好.上、下地幔的非绝热温度异常与由地震层析得到的地震波速异常显示一定的相关性.地幔内部的流动呈现复杂形态,反映了高瑞利数对流的特征.  相似文献   

10.
地震波速度结构层析成像和地震各向异性分析,是推测现今地幔流动的主要观测依据.从已有研究结果看,全球尺度的地幔流动的两个主要边界驱动力是顶部的冷却和底部的加热,地幔的密度和粘度控制流动速率.沿海沟由消减板带动的地幔下沉,和沿热点下面幔柱及洋中脊的地幔上升,是地幔垂直向流动的表现.GPS等测量显示的全球板块运动在一定条件下反映地幔顶部的水平流动.地幔柱可能有不同的根源深度,沿幔柱上升的地幔流在200—350km深度转变为水平流动.消减带附近有复杂的地幔流动格局,表明局部构造条件对地幔流动的影响.大陆下一般出现两个地幔各向异性层,较深的可能反映地幔流动,并与大陆根的状态有关.在不同构造环境下,地幔流动与板块构造之间有不同形态的相互作用关系,它可能驱动板块运动,也可能对板块运动产生阻力。  相似文献   

11.
Although vigorous mantle convection early in the thermal history of the Earth is shown to be capable of removing several times the latent heat content of the core, we are able to construct a thermal evolution model of the Earth in which the core does not solidify. The large amount of energy removed from the model Earth's core by mantle convection is supplied by the internal energy of the core which is assumed to cool from an initial high temperature given by the silicate melting temperature at the core-mantle boundary. For the smaller terrestrial planets, the iron and silicate melting temperatures at the core-mantle boundaries are more comparable than for the Earth, and the cores of these planets may not possess enough internal energy to prevent core solidification by mantle convection. Our models incorporate temperature-dependent mantle viscosity and radiogenic heat sources in the mantle. The Earth models are constrained by the present surface heat flux and mantle viscosity. Internal heat sources produce only about 55% of the Earth model's present surface heat flow.  相似文献   

12.
A simple kinematic-dynamic model of mantle flow around the slab-edge is constructed in order to understand the flow complexity there. The flow velocity on the top and the small boundary region around the shallow plate boundary is kinematically imposed in order to achieve a subduction-like feature and the flow in other part is dynamically calculated. The geometry of the plate mimics the region around the junction of Aleutian Islands and Kamchatka, that are examples of the convergent-transform fault plate boundaries. In a simple model in which the overlying plate is almost stationary, the lateral flow from the mantle under the subducting slab to the mantle under the neighboring plate is of minor importance, once the slab penetrates into the high viscosity layer where the downward flow encounters the resistance. Similar situation was found when the trench is advancing, that is, the trench moves toward the overlying plate. For the case with retreating trench, that is, the trench moves toward the subducting plate, a lateral flow exists even after the slab penetrates into the high viscosity layer, although its magnitude is significantly smaller than that of the plate velocity. The presence of a low viscosity layer just beneath the subducting plate may promote the emergence of lateral flow. A significant lateral flow is observed when the high temperature anomaly, that is, buoyant and low viscosity block carried by the movement of subducting plate, approaches the slab. These results may have important implications for the possible existence of trench parallel flow in the sub-slab mantle.  相似文献   

13.
Lower mantle heterogeneity could cause deviations from axial symmetry in geodynamo properties. Global tomography models are commonly used to infer the pattern of core–mantle boundary heat flux via a linear relation that corresponds to a purely thermal interpretation of lower mantle seismic anomalies, ignoring both non-thermal origins and non-resolved small scales. Here we study the possible impact on the geodynamo of narrow thermal anomalies in the base of the mantle, originating from either compositional heterogeneity or sharp margins of large-scale features. A heat flux boundary condition composed of a large-scale pattern and narrow ridges separating the large-scale positive and negative features is imposed on numerical dynamos. We find that hot ridges located to the west of a positive large-scale core–mantle boundary heat flux anomaly produce a time-average narrow elongated upwelling, a flow barrier at the top of the core and intensified low-latitudes magnetic flux patches. When the ridge is located to the east of a positive core–mantle boundary heat flux anomaly, the associated upwelling is weaker and the homogeneous dynamo westward drift leaks, precluding persistent intense low-latitudes magnetic flux patches. These signatures of the core–mantle boundary heat flux ridge are evident in the north–south component of the thermal wind balance. Based on the pattern of lower mantle seismic tomography (Masters et al., 2000), we hypothesize that hot narrow thermal ridges below central Asia and the Indian Ocean and below the American Pacific coast produce time-average fluid upwelling and a barrier for azimuthal flow at the top of the core. East of these ridges, below east Asia and Oceania and below the Americas, time-average intense geomagnetic flux patches are expected.  相似文献   

14.
黏滞分层地幔中密度异常驱动对流模型的研究   总被引:8,自引:3,他引:5       下载免费PDF全文
在地震层析成像计算的地幔密度异常直接驱动地幔对流的新方法的基础上,发展了在上、下地幔不同黏性结构框架下,密度异常驱动地幔对流的物理模型.利用 Grands和S12 WM13等地震层析成像模型推得的地幔密度异常分布,设置板块绝对运动极型场为运动上边界,考虑深度660km地震波不连续面为界的上、下地幔之间存在黏滞性的差异,直接反演了不同黏滞系数的双层地幔结构下地幔对流的模式.研究中选取地幔平均密度为ρ=5500kg/m3, 上层地幔平均黏滞系数为μ=1021Pa·s,计算了上、下地幔黏滞系数之比为1∶1, 1∶10, 1∶100和1∶1000时地幔大圆剖面、以及区域剖面上的流场.结果表明,两种模型在球谐展开1~13阶的范围内其对流的基本格局相似.当下地幔黏滞性超过上地幔的100倍时,下地幔流场速度与上地幔的流场速度相比显著减小,但是对流仍然表现出单层对流环的基本格局.论文还用 240km深度球面上的对流格局讨论了对流和全球构造之间的关系.  相似文献   

15.
从洋中脊上升的地慢物质带上来的大量热量,使在洋中脊裂谷处的海底热流及温度最高,向海沟逐渐减小.由于热胀冷缩,海底地势在洋中脊处最高.作者根据板块模型由一维运动物体的热传导方程推出裂谷处上升物体的温度分布公式.用此分布公式作为垂直边的边界条件,严格地求解了运动板块的二维运动物体热传导方程.用此方程研究了各参数与观测量之间的关系.通过改变公式中的参数值,使计算的理论曲线与实测海底热流一年龄及海底深度一年龄曲线拟合,从而求出了板块的厚度L=97km,地幔上升速度u=3.gmm/a,热膨胀系数a=3.37×10-5/℃及温度分布.该方法克服了在洋中脊处理论热流值趋于无限大的问题,并可以计算出地幔上升流的速度及宽度.  相似文献   

16.
A detailed comparison between fully dynamic and kinematic plate formulations has been made in models of mantle convection. Plate velocity is computed self-consistently from fully dynamic plate models with temperature- and stress-dependent viscosity and preexisting mobile faults. In fully dynamic models, the flow is driven solely by internal buoyancy, while in kinematic models the flow is driven by a combination of the prescribed surface velocity and internal buoyancy. Only a temperature-dependent viscosity, close to the effective viscosity determined from the fully dynamic models, is used in the kinematic models. The two types of models give very similar temperature structures and slab evolutionary histories when the effective viscosity and surface velocity are nearly identical. In kinematic plate models, the additional work introduced by the prescribed velocity boundary condition is apparently dissipated within the lithosphere and has little influence on the convection under the lithosphere. In models with periodic lateral boundary conditions, slabs sink into the lower mantle at an oblique angle and this contrasts with the vertical sinking which occurs with reflecting boundary conditions. Models show that we can simulate fully dynamic models with kinematic models under either periodic boundary conditions or reflecting boundary conditions.  相似文献   

17.
This study considers two-dimensional mantle flow beneath a rigid lithosphere. The lithosphere which forms the upper boundary of a convecting region moves with a prescribed uniform horizontal velocity, and thickens with distance from the accreting plate boundary as it cools. Beneath the lithosphere, the mantle deforms viscously by diffusion creep and is heated radiogenically from within. Solutions for thermal convection beneath the lithosphere are obtained by finite-difference methods. Two important conclusions have resulted from this study: (1) convective patterns of large aspect ratio are stable beneath a rigid moving lithosphere; (2) even for a lithosphere velocity as small as 3 cm/yr. and a Rayleigh number as large as 106, mantle circulation with large aspect ratio is driven dominantly by the motion of the lithosphere rather than by temperature gradients within the flow. Gravity, topography and heat flow are determined and implications for convection in the upper mantle are discussed.  相似文献   

18.
Edge-driven convection   总被引:23,自引:0,他引:23  
We consider a series of simple calculations with a step-function change in thickness of the lithosphere and imposed, far-field boundary conditions to illustrate the influence of the lithosphere on mantle flow. We consider the effect of aspect ratio and far-field boundary conditions on the small-scale flow driven by a discontinuity in the thickness of the lithosphere. In an isothermal mantle, with no other outside influences, the basic small-scale flow aligns with the lithosphere such that there is a downwelling at the lithospheric discontinuity (edge-driven flow); however, the pattern of the small-scale flow is strongly dependent on the large-scale thermal structure of a much broader area of the upper mantle. Long-wavelength temperature anomalies in the upper mantle can overwhelm edge-driven flow on a short timescale; however, convective motions work to homogenize these anomalies on the order of 100 million years while cratonic roots can remain stable for longer time periods. A systematic study of the effect of the boundary conditions and aspect ratio of the domain shows that small-scale, and large-scale flows are driven by the lithosphere. Edge-driven flow produces velocities on the order of 20 mm/yr. This is comparable to calculations by others and we can expect an increase in this rate as the mantle viscosity is decreased.  相似文献   

19.
The geomagnetic field and secular variation exhibit asymmetrical spatial features which are possibly originating from an heterogeneous thermal control of the Earth's lower mantle on the core. The identification of this control in magnetic data is subject to several difficulties, some of which can be alleviated by the use of core surface flow models. Using numerical dynamos driven by heterogeneous boundary heat flux, we confirm that within the parameter space accessible to simulations, time average surface flows obey a simple thermal wind equilibrium between the Coriolis and buoyancy forces, the Lorentz, inertial and viscous forces playing only a secondary role, even for Elsasser numbers significantly larger than 1. Furthermore, we average the models over the duration of three vortex turnovers, and correlate them with a longer time average which fully reveals the signature of boundary heterogeneity. This allows us to quantify the possibility of observing mantle control in core surface flows averaged over a short time period. A scaling analysis is performed in order to apply the results to the Earth's core. We find that three vortex turnovers could represent between 100 and 360 years of Earth time, and that the heat flux heterogeneity at the core-mantle boundary could be large enough to yield an observable signature of thermal mantle control in a time average core surface flow within reach of the available geomagnetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号