首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   

2.
A simple model is developed which estimates daily global radiation at the floor of a non-homogeneous Eucalyptus forest. Model input parameters are easily derived from field measurements and consist of individual tree location, tree height, maximum canopy width and its corresponding height, height of the lowest branch and trunk thickness. In addition, the model requires values for global and diffuse irradiance in the open. The tree canopy is represented as a series of spheres containing leaves which are homogeneously spaced but are oriented in the vertical plane. This configuration closely approaches that of actual eucalyptus trees. A Monte-Carlo approach is used to estimate the albedo of the unit sphere as a function of solar zenith angle. At a given combination of solar zenith and azimuth angle, the model estimates the solar irradiance at a specific forest floor location.The model, when tested against pyranometer measurements, predicted daily solar irradiance with a correlation of 0.98 and a standard error of 0.98 MJ m-2 day-1. This good performance is attributed to the spatial averaging of the radiation fluxes over the entire day, and the relatively low sensitivity of the calculated solar irradiance to sphere albedo.  相似文献   

3.
A global, flux-corrected climate model is employed to predict the surface wind stress and associated wind-driven oceanic circulation for climate states corresponding to a doubling and quadrupling of the atmospheric CO2 concentration in a simple 1% per year CO2 increase scenario. The model indicates that in response to CO2 increase, the position of zero wind stress curl in the mid-latitudes of the Southern Hemisphere shifts poleward. In addition, the wind stress intensifies significantly in the mid-latitudes of the Southern Hemisphere. As a result, the rate of water circulation in the subpolar meridional overturning cell in the Southern Ocean increases by about 6 Sv (1 Sv=106 m3 s−1) for doubled CO2 and by 12 Sv for quadrupled CO2, implying an increase of deep water upwelling south of the circumpolar flow and an increase of Ekman pumping north of it. In addition, the changes in the wind stress and wind stress curl translate into changes in the horizontal mass transport, leading to a poleward expansion of the subtropical gyres in both hemispheres, and to strengthening of the Antarctic Circumpolar Current. Finally, the intensified near-surface winds over the Southern Ocean result in a substantial increase of mechanical energy supply to the ocean general circulation.  相似文献   

4.
In this paper, the role of westerly winds at southern high latitudes in global climate is investigated in a fully coupled ocean-atmosphere general circulation model. In the model, the wind stress south of 40°S is turned off with ocean and atmosphere fully coupled both locally and elsewhere. The coupled model explicitly demonstrates that a shutdown of southern high latitude wind stress induces a general cooling over the Antarctic Circumpolar Current (ACC) region, with surface Ekman flow and vertical mixing p...  相似文献   

5.
橡胶林的热量平衡   总被引:2,自引:0,他引:2  
本文通过实测资料与理论计算,分析了我国主要橡胶产区(广东)不同类型橡胶园的热量平衡各分量的特征,并与热带次生杂木林、热带稀树草原及裸地作了对比。胶林的热量收入(净辐射)可观,晴天日总量最大可达15.95MJ/m~2,与次生林相仿,而大于空旷地。热量支出项中,蒸散耗热占60—70%,湍流热通量占25—35%,土壤热通量占5—10%。其比例随林型结构与林分而异,且胶林作用层与林地作用层之间、胶林(或纯茶林、次生林)与空旷地之间差异明显。  相似文献   

6.
The characteristics of dynamics and thermodynamics of the atmospheric boundary layer in a part of the Colorado River Valley, centered around Lake Mohave, have been investigated by analysis of measurements conducted during a field program in late spring and early summer of 1986 and a series of numerical simulations by a three-dimensional second-moment turbulence-closure model. The model was validated against measurements described in a companion article (Engeret al., 1993). According to airsonde measurements performed on eight nights, the depth of the surface inversion was around 200 m with an average temperature gradient of about 30 K km–1. Analysis of acoustic sounder data collected during one month revealed significant diurnal variations ofU andV wind-speed components related to slope and valley flows, respectively. Some of the dynamics properties have been explained by the simulation results. It has been shown that the appearance of supergeostrophic southerly valley flow is associated with the westerly component of the geostrophic flow. Since a westerly component of the geostrophic wind is quite common for this area in summer, this effect also explains the frequently observed southerly valley flow in summer. Elevated minima of the measured wind speed around valley ridges appear to be related to the interaction of conservation of momentum in theX andY directions. The critical direction of the geostrophic wind relevant for reversal of up-valley flow to down-valley flow has also been studied. The critical direction is about 300° for one of the measurement sites and, depending on the angle between valley axis and south-north direction, the critical direction is expected to vary by about 15–20°. The scale analysis of the simulated equations of motion and turbulence kinetic energy emphasizes the strong impact of meandering of the flow due to actual topographic complexity.  相似文献   

7.
The equations of motion applying to the wind field in a forest canopy are simplified to a balance between the shearing stress gradient and either the form-drag of the leaves in the upper dense canopy, or the overall horizontal pressure gradient in the more open space beneath. The equations imply that, in descending through the forest, the stress and wind vectors turn through an angle which depends on the forest characteristics and on the stability and the speed of the airflow above the forest. The turning is roughly confirmed by an overall average measured on a very flat site near Thetford, Norfolk, covered by an extensive uniform pine forest.  相似文献   

8.
Many forest management methods alterstand density uniformly. The effectsof such a change on the wind andturbulence regimes in the forest arecritical to a number of processes governingthe stability of the stand and itsmicroclimate. We measured wind speed andturbulence statistics with a Dantec tri-axialhot-film probe in model forests of variousdensities (31–333 trees m-2), created byremoving whole trees in a regular pattern in awind tunnel, and compared them with similarmeasurements made with propeller anemometers insimilarly thinned plots (156–625 trees ha-1)within a Sitka spruce stand in Scotland. The results agree well, in general, with measurements made inother such studies with diverse canopy types.The systematic variations with density and verticalleaf-area distribution (which differed betweenwind-tunnel and field trees) in our work can explainmuch of the variability shown in scaled profiles ofbasic turbulence statistics reported in theliterature. The wind tunnel and field results are shown to be in good agreement overalldespite the difference in vertical leaf-areadistribution. Within-canopy and isolated-treedrag coefficients in the wind tunnel showthat tree-scale shelter effects increase astree density increases. The measurements indicatethat turbulence in the canopy is dominated bylarge-scale structures with dimensions of the sameorder as the height of the canopy as found inother studies but suggest that inter-tree spacing also modulates the size of these structures. These structures are associated with the sweeps that dominatemomentum exchange in the canopy and it is thisfact that allows the tri-axial probe to operate sowell despite the relatively narrow range of anglesin which the wind vector is correctly measured. Theratio of streamwise periodicity of these structuresto vorticity thickness varies systematically withtree density in the range 2.7–5.1, which spans theexpected range of 3.5–5 found in a laboratorymixing-layer, suggesting that tree spacing imposes another relevant length scale. This test andothers show that the results are in agreement withthe idea that canopy turbulence resembles that of a mixing layer even though they disagree with, and challenge the linear relationship between, streamwise periodicity andshear length scale presented recently in theliterature. The measurements are also in goodoverall agreement with simple drag models presented recently by other researchers.  相似文献   

9.
The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1?Sv; 1?Sv?=?106?m3?s?1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.  相似文献   

10.
Wind fields in the atmospheric surface layer (ASL) are highly three-dimensional and characterized by strong spatial and temporal variability. For various applications such as wind-comfort assessments and structural design, an understanding of potentially hazardous wind extremes is important. Statistical models are designed to facilitate conclusions about the occurrence probability of wind speeds based on the knowledge of low-order flow statistics. Being particularly interested in the upper tail regions we show that the statistical behaviour of near-surface wind speeds is adequately represented by the Beta distribution. By using the properties of the Beta probability density function in combination with a model for estimating extreme values based on readily available turbulence statistics, it is demonstrated that this novel modelling approach reliably predicts the upper margins of encountered wind speeds. The model’s basic parameter is derived from three substantially different calibrating datasets of flow in the ASL originating from boundary-layer wind-tunnel measurements and direct numerical simulation. Evaluating the model based on independent field observations of near-surface wind speeds shows a high level of agreement between the statistically modelled horizontal wind speeds and measurements. The results show that, based on knowledge of only a few simple flow statistics (mean wind speed, wind-speed fluctuations and integral time scales), the occurrence probability of velocity magnitudes at arbitrary flow locations in the ASL can be estimated with a high degree of confidence.  相似文献   

11.
Observations have been made of the windspeed, wind direction, and tree movement at the edge and 20 m within a stand of Scots pine (Pinus sylvestris L.) close to 11 m in height. The spectra of windspeed near canopy top, together with the output of accelerometers and video observations of tree movement at mid-crown, were compared in the same stand prior and two years after first thinning. Furthermore, the transfer of wind energy into tree movement was investigated by calculating the mechanical transfer function (H m 2 ) between the wind spectrum (S uu) and the tree's response (S yy), i.e. H m 2 = Syy/Suu. Trees were found to behave like damped harmonic oscillators. They reacted to sudden increases in windspeed, reached their greatest displacement during the first cycle, and then returned to their rest position under the influence of damping. The spectral peak frequencies in S yy and in H m 2coincided with the estimated natural sway frequency of trees. Response in the second mode was, however, also evident, especially within the unthinned stand. The periodogram plots showed a consistent trend of a marked decrease in the response of the tree to increase in frequency. Almost no difference in the wind energy transfer, i.e. peak frequencies and peak width, and damping of the system was found between Scot pine at 2700 and 1500 stems per hectare. However, along the stand edge tree movement was greater than within the stand indicating greater wind energy transfer and damping of the system along the stand edge than within the stand.  相似文献   

12.
A numerical model was developed to simulate neutrally stratified air flow over and through a forest edge. The spatially averaged equations for turbulent flow in vegetation canopies are derived as the governing equations. A first-order closure scheme with the capability of accounting for the bulk momentum transport process in vegetation canopies is employed. The averaged equations are solved numerically by a fractional time-step method and successive relaxation. The asymptotic solution in time is regarded as the steady-state solution. Comparisons of model output to the field measurements of Raynor (1971) indicate that the model provides a realistic mean flow.Momentum balance computations show that the pressure gradient induced by the wind blowing against the forest edge is significant and has the same order of magnitude as the drag force in the edge region. The edge effect involves the generation of drag forces, the appearance of a large pressure gradient, the upward deflection of mean flow and the transport of momentum into the edge of the canopy.  相似文献   

13.
Edge Flow and Canopy Structure: A Large-Eddy Simulation Study   总被引:4,自引:4,他引:0  
Sharp heterogeneities in forest structure, such as edges, are often responsible for wind damage. In order to better understand the behaviour of turbulent flow through canopy edges, large-eddy simulations (LES) have been performed at very fine scale (2 m) within and above heterogeneous vegetation canopies. A modified version of the Advanced Regional Prediction System (ARPS), previously validated in homogeneous conditions against field and wind-tunnel measurements, has been used for this purpose. Here it is validated in a simple forest-clearing-forest configuration. The model is shown to be able to reproduce accurately the main features observed in turbulent edge flow, especially the “enhanced gust zone” (EGZ) present around the canopy top at a few canopy heights downwind from the edge, and the turbulent region that develops further downstream. The EGZ is characterized by a peak in streamwise velocity skewness, which reflects the presence of intense intermittent wind gusts. A sensitivity study of the edge flow to the forest morphology shows that with increasing canopy density the flow adjusts faster and turbulent features such as the EGZ become more marked. When the canopy is characterized by a sparse trunk space the length of the adjustment region increases significantly due to the formation of a sub-canopy wind jet from the leading edge. It is shown that the position and magnitude of the EGZ are related to the mean upward motion formed around canopy top behind the leading edge, caused by the deceleration in the sub-canopy. Indeed, this mean upward motion advects low turbulence levels from the bottom of the canopy; this emphasises the passage of sudden strong wind gusts from the clearing, thereby increasing the skewness in streamwise velocity as compared with locations further downstream where ambient turbulence is stronger.  相似文献   

14.
Experiments with the coupled climate model CLIMBER-3α, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation.  相似文献   

15.
The influence of a freshly logged area in a managed pine forest on the flow field is investigated by comparing sodar wind profile data over the forest canopy with the synoptic wind field extracted from North American Regional Reanalysis, National Centers for Environmental Prediction. As a consequence of the pressure gradient arising from the sharp temperature difference between the clearcut and the surrounding uncut forests, the local wind direction over the forest measured with the sodar departs dramatically from the prevailing synoptic wind direction when the latter is transverse to the clearcut-sodar direction. Sodar measurements also indicate systematic strong updrafts during daytime followed by nighttime downdrafts with wind coming from the logged area. This suggests the presence of horizontal advection carrying daytime warm air (or nighttime cool air) from the clearcut to the forested area. This paper also examines the influence of wind velocity, clearcut fetch, and solar radiation on locally generated circulations and advection. The presence of local circulations arising from contrasting neighboring surface characteristics well outside the footprint is of particular relevance for atmospheric flux sites where robust surface?Catmosphere exchange values are sought. This study highlights the high level of circumspection required at the time of identifying locations for flux sites. It also suggests vigilant monitoring of the surrounding landscape during eddy?Cflux measurements particularly in actively managed landscapes.  相似文献   

16.
We simulate the microscale heterogeneities of turbulent variables observed at a complex site for different wind directions. The atmospheric computational fluid dynamics (CFD) results are compared with an ensemble of 36 months of data collected at the experimental site SIRTA “Site Instrumental de Recherche par Télédétection Atmosphérique”, located near Paris (France) in a semi-urban environment. The experimental data show that the normalized turbulent kinetic energy (TKE) k/U 2 (where k is TKE and U is the wind speed) at 10-m height, for two different locations, is highly dependent on wind direction and strongly influenced by trees. These measurements show a strong increase of the normalized TKE downstream of the forest canopies with a large variability within the 36-month period in part due to the variation of the tree foliage. The numerical simulations are carried out using the CFD code Code_Saturne with the standard k?ε closure, in neutral stratification. The buildings are taken into account explicitly in the mesh and the forested areas are modelled with two approaches: the classical roughness wall law and a drag porosity. A comparison has been performed between the calculated values and the median of measured values of the normalized TKE and the normalized friction velocity, for each wind sector of 10°. A very good agreement is obtained with the drag porosity model, whereas the classical roughness law leads to a strong underestimation downstream of the forested areas. However, this large improvement of the results using the drag porosity model can only be obtained with a refinement of the grid, especially in forested areas, and an accurate land-use map.  相似文献   

17.
This paper discusses the importance of the aerodynamic characteristics of forest and other similar canopies to modelling of boundary-layer flow and to estimating the diffusivity coefficients of turbulence transfer mechanisms over such canopies.The hypothesis of Marunich (1971) reported by Tajchman (1981) that the zero-plane displacement, d, equals the upward displacement of the flow trajectory, is critically examined. It is concluded that Marunich's hypothesis is conceptually incorrect and that calculations of d based on Marunich's hypothesis are inherently in error.This paper presents a method based on the mass conservation principle and uses wind profiles in and above a forest canopy as the sole input for determining d, z 0 and u *.Sensitivities of calculated results to measurements errors of wind profile data are evaluated. It is found that an error of less than 1% in wind in the logarithmic regime above the canopy can introduce up to 100% errors in calculated values of d, z 0 and u *. It is also found that the high sensitivity to wind data accuracy, characteristic of the present method, can be used as a guide for the selection of high quality canopy wind data.  相似文献   

18.
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (\({>}1\) m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy–atmosphere exchanges in forest-edge regions.  相似文献   

19.
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed ‘flushing’, that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.  相似文献   

20.
Modelling waving crops in a wind tunnel   总被引:1,自引:0,他引:1  
Analysis of movie films of a field of barley, combined with observations of the motions of individual plants, show that single stalks oscillate at a well-defined natural frequency even when stimulated by turbulent winds. Treating single stalks as resonant cantilevers allows the use of standard engineering methods to determine their elastic properties. Armed with these values, the application of similarity analysis to the equation of motion of a single stalk leads to criteria for aeroelastic modelling of wheat plants in the wind tunnel. A representative value for the spacing of stalks in a small section of model wheat field was calculated by referring to published data on momentum absorption in a variety of real and model canopies. Preliminary measurements of first and second moments of velocity in the model appear to confirm the importance of including elastic properties in wind-tunnel simulations of airflow in flexible crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号