首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little Ice Age (LIA) moraines along the margins of Skálafellsjökull and Heinabergsjökull, two neighbouring outlet glaciers flowing from the Vatnajökull ice‐cap, have been re‐dated to test the reliability of different lichenometric approaches. During 2003, 12 000 lichens were measured on 40 moraine fragments at Skálafellsjökull and Heinabergsjökull to provide surface age proxies. The results are revealing. Depending on the chosen method of analysis, Skálafellsjökull either reached its LIA maximum in the early 19th century (population gradient) or the late 19th century (average of five largest lichens), whereas the LIA maximum of Heinabergsjökull occurred by the mid‐19th century (population gradient) or late‐19th century (average of 5 largest lichens). Discrepancies (c. 80 years for Skálafellsjökull and c. 40 years for Heinabergsjökull) suggest that the previously cited AD 1887 LIA maxima for both glaciers should be reassessed. Dates predicted by the lichen population gradient method appear to be the most appropriate, as mounting evidence from other geochronological reconstructions and sea‐ice records throughout Iceland tends to support an earlier LIA glacier maximum (late 18th to mid‐19th century) and probably reflects changes in the North Atlantic Oscillation. These revised chronologies shed further light on the precise timing of the Icelandic LIA glacier maximum, whilst improving our understanding of glacier‐climate interactions in the North Atlantic.  相似文献   

2.
Owing to increased winter balances especially since AD 1988/89, almost all valley outlet glaciers of Jostedalsbreen in western Norway are experiencing the largest advance since that of the early 18th century, the regional "Little Ice Age" maximum. Brigsdalsbreen advanced 441 m between 1987 and 1997. By the end of this period, the glacier had reached the outlet of the proglacial lake Brigsdalsvatnet, ploughing into unfrozen, fine-grained, water-soaked glaciolimnic sediments from the lake bottom and forming frontal moraines. These moraines are characterised by a lack of internal structures and preferred fabric. Owing to the strong advance, the moraine morphology is constantly changing, leaving only temporary moraine ridges.
Observations made along the glacier front suggest that the formation of these moraines can best be described as "bulldozed moraines", since the term push moraine, commonly associated with advancing glaciers, should be restricted to permafront environments. Different processes involved in moraine formation at frontal and lateral glacier margins result from variations in proglacial sediment properties, microrelief and glacier dynamics. Among these processes, large boulders left in the proglacial areas are pushed forward, forming pressure ridges on the distal side. Some of the largest boulders ( c . 80–120 m3) are overturned or rotated by the glacier.  相似文献   

3.
Samples taken from the top surfaces of boulders on the Lake Misery moraines at Arthur's Pass, in the Southern Alps of New Zealand, were analysed for 10Be by accelerator mass spectrometry. Exposure ages calculated with the currently accepted production rate, along with scaling corrections for sample latitude and elevation (42°50'S, 960 m), are: 9300 ± 990, 11,000 ± 1360, 11,410 ± 1030, 12,050 ± 960, and 12,410 ± 1180 years. We consider the date of 9300 years to be an outlier, not included in our mean exposure age of 11,720 ± 320 years for the Lake Misery moraines. Based on exposure ages and geomorphologic similarities, we compare the Lake Misery moraines with an Egesen moraine complex at Julier Pass in the Swiss Alps (46°30'N, 2200 m). Based on the 10Be, 26Al, and 36Cl exposure ages of three boulders, we calculate a mean exposure age of 11,750 ± 140 years for the outer Egesen moraine at Julier Pass. Based solely on 10Be measurements, we obtain a mean exposure age of 11,860 ± 210 years for this outer moraine. Egesen moraines in the Swiss Alps represent glacier readvance during the Younger Dryas cold reversal, based on regional correlations and on basal radiocarbon dates from bogs located up-valley of Egesen moraines. The exposure dates from Arthur's Pass and Julier Pass show synchronous glacier advances both in the Southern Alps and in the European Alps during the European Younger Dryas chronozone of Mangerud et al .  相似文献   

4.
Erosion and sediment transport in High Arctic rivers, Svalbard   总被引:2,自引:0,他引:2  
This paper discusses sediment yield, sediment delivery and processes of erosion in rivers subject to High Arctic conditions in Svalbard. Long-term measurements reveal large variations between rivers and from year to year in each individual river. In the unglacierized catchment of Londonelva, annual sediment transport varied between 28 and 93 t/yr, with a mean sediment yield of 82.5 t/km2/yr. In the glacier-fed rivers Bayelva and Endalselva, the suspended sediment transport varied in the range of 5126 t/yr to 22797 t/yr during a 12-year period. A mean of 11 104 t/yr gave rise to a mean sediment yield of 359 t/km2/yr for the whole Bayelva catchment area. The sediment yield of the glacier and the moraine area was estimated at 586 t/km2/yr. A conceptual model used to interpret the long- and short-term patterns of sediment concentration in the meltwater from the glacier and erosion of the neoglacial moraines is proposed. Evidence is found that a proportion of the sediments are delivered by a network of englacial and subglacial channels that exist even in cold ice. Regression analyses of water discharge versus suspended sediment concentration gave significant correlations found to be associated with the stability of ice tunnels in cold ice. Large floods have been found to flush the waterways and exhaust the sediment sources. A long-term change in the exponent of regression lines is attributed to changes in sediment availability caused by flushing and expansion of tunnels and waterways by large floods and a subsequent slow deformation of them caused by the ice overburden and the glacier movement. A comparison of sediment yields from a number of polythermal and temperate glaciers in various areas showed large differences that were attributed primarily to bedrock susceptibility to erosion and, secondarily, to glaciological parameters.  相似文献   

5.
Contemporary variants of the lichenometric dating technique depend upon statistical correlations between surface age and maximum lichen sizes, rather than an understanding of lichen biology. To date three terminal moraines of an Alaskan glacier, we used a new lichenometric technique in which surfaces are dated by comparing lichen population distributions with the predictions of ecological demography models with explicit rules for the biological processes that govern lichen populations: colonization, growth, and survival. These rules were inferred from size–frequency distributions of lichens on calibration surfaces, but could be taken directly from biological studies. Working with two lichen taxa, we used multinomial‐based likelihood functions to compare model predictions with measured lichen populations, using only the thalli in the largest 25% of the size distribution. Joint likelihoods that combine the results of both species estimated moraine ages of ad 1938, 1917, and 1816. Ages predicted by Rhizocarpon alone were older than those of P. pubescens. Predicted ages are geologically plausible, and reveal glacier terminus retreat after a Little Ice Age maximum advance around ad 1816, with accelerated retreat starting in the early to mid twentieth century. Importantly, our technique permits calculation of prediction and model uncertainty. We attribute large confidence intervals for some dates to the use of the biologically variable Rhizocarpon subgenus, small sample sizes, and high inferred lichen mortality. We also suggest the need for improvement in demographic models. A primary advantage of our technique is that a process‐based approach to lichenometry will allow direct incorporation of ongoing advances in lichen biology.  相似文献   

6.
The identification of surge activity is important in assessing the duration of the active and quiescent phases of the surge cycle of Svalbard glaciers. Satellite and aerial photographic images are used to identify and describe the form and flow of Perseibreen, a valley glacier of 59 km2 on the east coast of Spitsbergen. Heavy surface crevassing and a steep ice front, indicative of surge activity, were first observed on Perseibreen in April 2002. Examination of high resolution (15 m) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery confirmed this surge activity. Perseibreen retreated by almost 750 m between 1961 and 1990. Between 1990 and the summer of 2000, Perseibreen switched from retreat and its front began to advance. Rapid advance was underway during the period June 2000 to May 2001, with terminus advance at over 400 m yr−1. Between May and August 2001 the rate increased to over 750 m yr−1. The observed crevasse orientation indicates that ice was in longitudinal tension, suggesting the down-glacier transfer of mass. Ice surface velocities, derived from image correlation between ASTER images, were 2-2.5 m d−1 between May and August 2001. The glacier was flowing at a relatively uniform speed with sharp velocity gradients located close to its lateral margins, a velocity structure typical of ice masses in the active phase of the surge cycle. The stress regime is extensional throughout and the surge appears to be initiated low on the glacier. This is similar to the active-phase dynamics of other Svalbard tidewater glaciers. Perseibreen has probably been inactive since at least 1870, a period of about 130 years to the present surge which defines a minimum length for the quiescent phase.  相似文献   

7.
ABSTRACT. We examine the deglaciation of the eastern flank of the North Patagonian Icefield between latitudes 46° and 48°S in an attempt to link the chronology of the Last Glacial Maximum moraines and those close to present-day outlet glaciers. The main features of the area are three shorelines created by ice-dammed lakes that drained eastwards to the Atlantic. On the basis of 16 14C and exposure age dates we conclude that there was rapid glacier retreat at 15–16 ka (calendar ages) that saw glaciers retreat 90–125 km to within 20 km of their present margins. There followed a phase of glacier and lake stability at 13.6–12.8 ka. The final stage of deglaciation occurred at c. 12.8 ka, a time when the lake suddenly drained, discharging nearly 2000 km3 to the Pacific Ocean. This latter event marks the final separation of the North and South Patagonian Icefields. The timing of the onset of deglaciation and its stepped nature are similar to elsewhere in Patagonia and the northern hemisphere. However, the phase of lake stability, coinciding with the Antarctic Cold Reversal and ending during the Younger Dryas interval, mirrors climatic trends as recorded in Antarctic ice cores. The implication is that late-glacial changes in southern Patagonia were under the influence of the Antarctic realm and out of phase with those of the northern hemisphere.  相似文献   

8.
9.
The Aragón Valley glacier (Central Western Pyrenees) has been studied since the late nineteenth century and has become one of the best areas in the Pyrenees to study the occurrence of Pleistocene glaciations and the relationships between moraines and fluvial terraces. New morphological studies and absolute ages for moraines and fluvial terraces in the Aragón Valley allow a correlation with other Pyrenean glaciers and provide solid chronologies about the asynchroneity between global last glacial maximum (LGM) and the maximum ice extent (MIE). Six frontal arcs and three lateral morainic ridges were identified in the Villanúa basin terminal glacial complex. The main moraines (M1 and M2) correspond to two glacial stages (oxygen isotopic stages MIS 6 and MIS 4), dated at 171 ± 22 ka and 68 ± 7 ka, respectively. From a topographical point of view, moraine M1 appears to be linked to the 60 m fluvioglacial terrace, dated in a tributary of the Aragón River at 263 ± 21 ka. The difference in age between M1 moraine and the 60 m fluvioglacial terrace suggests that the latter belongs to an earlier glacial stage (MIS 8). Moraine M2 was clearly linked to the fluvioglacial 20 m terrace. Other minor internal moraines were related to the 7–8 m terrace. The dates obtained for the last glacial cycle (20–18 ka) are similar to other chronologies for Mediterranean mountains, and confirm the occurrence of an early MIE in the Central Pyrenees that does not coincide with the global LGM.  相似文献   

10.
11.
This paper outlines the results of stable isotope (δD-δ18O) analysis of snow and glacier ice undertaken as part of a larger study concerning structural glaciology, debris entrainment and debris transport patterns at Midtre Lovénbreen, Svalbard. Samples of fresh snow were collected from the glacier surface in spring 1999 and samples of surface glacier ice and basal ice samples were collected in summer 1999. When plotted on bivariate co-isotopic diagrams (δD-δ18O), the slopes obtained for snow and unmodified glacier ice (6.4 and 6.9, respectively) are less steep than those for the basal ice layer and transverse ice layers on the ice surface (7.6 and 7.7, respectively). The difference in the slope of these lines is not statistically significant at the sample size (50) used in this study. The results indicate that although stable isotope analysis clearly has potential for studies of debris entrainment, transport and structural glaciology, difficulties remain with applying this technique. It is therefore not possible to apply these isotopic techniques to ice facies of unknown origins. In particular, large sample numbers are required to establish statistical differences and high-resolution sampling of specific ice facies may be necessary to establish isotopic differences.  相似文献   

12.
Terrace remnants close to the marine limit as well as two separate moraine ridges are observed in front of the glacier Albrechtbreen. The stacking of marine sediments from an original elevation of ca. 60–80 m a.s.l. into the Little Ice Age Moraine gives evidence for a considerably smaller glacier following the early Holocene deglaciation compared to that of the present. The outer moraine is composed of glacial diamicton. Radiocarbon datings of whale ribs, shell fragments and a log taken from sediment in front of Albrechtbreen indicate that the initial deglaciation occurred before 9, 400 B.P. and that the outer moraine was formed during a younger Holocene glacial advance. Lithological differences between the two moraine ridges suggest that the first ice advance occurred during a period with limited permafrost, whereas permafrost was more extensive during the Little Ice Age.  相似文献   

13.
基于天山托木尔峰青冰滩72号冰川2008年高精度差分GPS测量资料,2009年末端重复测量数据以及1964年地形图,通过对比研究近45 a来该冰川的变化特征,结果表明:1964~2009年,青冰滩72号冰川末端退缩1 852 m,年均后退41 m,由此造成面积减少约为1.53 km2,年均减少0.03 km2;1964~2008年,冰舌平均减薄9.59±6 m,年均减薄约0.22±0.14 m,冰储量亏损达14.1±8.8×10-3 km3(12.7±7.9×10-3 km3 w.e.)。与天山其它区域典型监测冰川相比,青冰滩72号冰川消融强烈,是区域气候、末端海拔、冰川类型、表碛覆盖等因素综合影响的结果。  相似文献   

14.
Glaciers in small mountain cirques on South Georgia respond rapidly and sensitively to changes in South Atlantic climate. The timing and rate of their deglaciation can be used to examine the impact that nineteenth- and twentieth-century climate change has had on the glacial dynamics and terrestrial ecosystems of South Georgia. As part of a reconnaissance study in Prince Olav Harbour (POH), South Georgia, we measured the size of lichens ( Rhizocarpon Ram. em Th. Fr. subgenus. Rhizocarpon group) on ice-free moraine ridges around two small mountain cirques. Our aims were twofold: first, to provide age estimates for lichen colonization, and hence, deglaciation of the moraine ridges, and second, to examine the potential of applying lichenometry more widely to provide deglacial age constraints on South Georgia. In the absence of lichen age-size (dating) curves for South Georgia, we use long-term Rhizocarpon lichen growth-rates from recent studies on sub-Antarctic Islands and the western Antarctic Peninsula to calculate likely age estimates. These data suggest ice retreat from the two outermost moraines occurred between the end of the 'Little Ice Age' (post c. 1870) and the early twentieth century on South Georgia. Lichen colonization of the innermost moraines is probably related to glacier retreat during the second half of the twentieth century, which has been linked to a well-defined warming trend since c. 1950. Patterns of possible nineteenth- and twentieth-century glacial retreat identified in POH need to be tested further by establishing species- and site-specific lichen age-size (dating) curves for South Georgia, and by applying lichenometry to other mountain cirques across South Georgia.  相似文献   

15.
Glaciers in Svalbard: mass balance, runoff and freshwater flux   总被引:4,自引:1,他引:4  
Gain or loss of the freshwater stored in Svalbard glaciers has both global implications for sea level and, on a more local scale, impacts upon the hydrology of rivers and the freshwater flux to fjords. This paper gives an overview of the potential runoff from the Svalbard glaciers. The freshwater flux from basins of different scales is quantified. In small basins (A < 10 km2), the extra runoff due to the negative mass balance of the glaciers is related to the proportion of glacier cover and can at present yield more than 20% higher runoff than if the glaciers were in equilibrium with the present climate. This does not apply generally to the ice masses of Svalbard, which are mostly much closer to being in balance. The total surface runoff from Svalbard glaciers due to melting of snow and ice is roughly 25 ± 5 km3 a−1, which corresponds to a specific runoff of 680 ± 140 mm a−1, only slightly more than the annual snow accumulation. Calving of icebergs from Svalbard glaciers currently contributes significantly to the freshwater flux and is estimated to be 4 ± 1 km3 a−1 or about 110 mm a−1.  相似文献   

16.
A unique 25-year lichen growth monitoring programme involving 2,795 individuals of the Rhizocarpon subgenus at 47 sites on 18 glacier forelands in the Jotunheimen–Jostedalsbreen regions of southern Norway is reported. The data are used to address fundamental questions relating to direct lichenometry: spatial and temporal variability in lichen growth rates, climatic effects on lichen growth rates, lichen growth models, and implications for lichenometric dating. Mean annual (diametral) growth rate ranged from 0.43 to 0.87 mm yr−1 between sites, which is attributed primarily to local habitat differences. Interannual variability in annual mean growth rate exceeded 1.0 mm yr−1 at some sites. Annual mean growth rates for all sites combined varied from 0.52 to 0.81 mm yr−1 and was positively correlated with annual mean temperature and winter mean temperature (both r = 0.64, p <0.005) but not with summer seasonal temperature: positive correlations with annual and winter precipitation were less strong and the correlation with summer precipitation was marginally significant (r = 0.41 p <0.10). Growth-rate models characterized by annual growth rates that remain approximately constant or increase with lichen size up to at least 120 mm tended to fit the data more closely than a parabolic model. This is tentatively attributed to a long 'linear/mature' phase in the growth cycle. Comparison with growth rates inferred from indirect lichenometry suggest that such high measured growth rates could not have been maintained over the last few centuries by the largest lichens used in southern Norway for lichenometric dating. Several hypotheses, such as the effects of competition and climate change, which might explain this paradox, are discussed.  相似文献   

17.
18.
Two lichenometric techniques were compared in a study of lichen growth–rate in northern Sweden. The first technique, based on the maximum lichen diameter on glacier moraines, was identical to the technique used in the 1970s, whereas the other utilized the lichen diameter measured on 100 randomly selected boulders. The results indicate that it does not matter which technique is chosen, as long as the technique is used consistently on both the calibration surfaces and the surfaces to be dated. The use of data from both the 1970s and the 2000s increased the number of calibration surfaces available. The new calibration curve indicates that the age of Little Ice Age moraines was underestimated by up to about 30 years in the study conducted in the 1970s.  相似文献   

19.
Two lichenometric techniques were compared in a study of lichen growth–rate in northern Sweden. The first technique, based on the maximum lichen diameter on glacier moraines, was identical to the technique used in the 1970s, whereas the other utilized the lichen diameter measured on 100 randomly selected boulders. The results indicate that it does not matter which technique is chosen, as long as the technique is used consistently on both the calibration surfaces and the surfaces to be dated. The use of data from both the 1970s and the 2000s increased the number of calibration surfaces available. The new calibration curve indicates that the age of Little Ice Age moraines was underestimated by up to about 30 years in the study conducted in the 1970s.  相似文献   

20.
Abstract:

DAHL, RAGNAR. Late-glacial accumulation forms and glaciation in the Narvik-Skjomen district, Norway. Norsk geogr. Tidsskr. 1967, 21, 157–241.

Late-glacial accumulation forms at corresponding levels are described and discussed. Most of the accumulations are moraine ridges deposited at the lateral margins of the ice flowing in the main valleys or at the lateral and frontal margins of ice tongues branching out into tributaries.

The frontal moraine ridges appear only in small tributary valleys or similar depressions in the terrain. They have an arched form and an advanced position in the depressions and are broken by melt-water channels. Together with the different indications of pressure in the material, this shows that the moraines correspond to phases of the deglaciation period in which the ice masses were temporarily advancing. The calculated gradients of the ice surface and radio-carbon datings indicate that these phases correspond to the two glacial phases of the Tromsø-Lyngen substage, which, according to ANDERSEN (1965), approximately correspond to the Early Dryas and Late Dryas periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号