首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

2.
The hydrogeochemical characterization of groundwater helps to assess the trend of salinization and freshening of the groundwater. The present study was carried out to understand the lateral and vertical variation of groundwater salinity and the process of salinization and freshening of the groundwater in a coastal aquifer comprising a freshwater lens. The partially isolated unconfined aquifer selected for the present study is lying just south of the Chennai City, one of the densely populated cities on the east coast of South India. Critical problems affecting this aquifer include a thin aquifer which is connected/surrounded by saltwater on all the sides, overexploitation of the groundwater, surface impermeabilization due to increasing residential areas, and destruction of existing dune morphology by conversion of barren land to the residential area which causes a reduction in their barrier effect to seawater intrusion. The process of salinization and freshening of the groundwater was studied and monitored by using electrical resistivity survey and hydrogeochemical analysis. The vertical electrical sounding was carried out at 17 locations, and 400 water samples were collected and analyzed from 50 locations during the period from August 2008 to May 2010 for this study. The apparent resistivity values were analyzed and compared with groundwater quality to demarcate the zone of seawater intrusion. The regional flow direction of the groundwater is westward and eastward with respect to the central stretch and groundwater level ranges from 4.96 m MSL at the dune morphology to 0 m MSL along the boundary on all the sides. Base exchange index indicates that salinization trend in the northern part of the study area is due to the extensive groundwater pumping which increases the possibility of seawater intrusion. The increase of base exchange index towards southern part indicates a better groundwater quality of the aquifer due to proper land use practices. A strong trend of quality alteration is clearly visible from the base exchange index in response to the seasonal change between monsoon and dry season. In the western side, the monsoonal variation in the salinization and freshening of the groundwater was not noticed; however, the salinity is slightly higher than freshwater due to the presence of clay.  相似文献   

3.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

4.
The Janah alluvial aquifer is located in southern Iran with an arid climate. The type of groundwater in this aquifer is dominantly of sodium chloride and total dissolved solid of groundwater samples range from 1.63 to 335 g/L which confirms that groundwater quality has been severely degraded by salinization. Hydrogeochemical and isotopic investigations were conducted to identify the source of salinity. Total dissolved solids and major ion concentrations were measured at 51 selected sampling sites including springs, wells and surface waters. In addition stable isotopic composition (oxygen-18 and deuterium) was measured in 6 sampling points.The study indicates that the sources of salinity of the Janah aquifer include dissolution of salt diapir and evaporite rocks, a geothermal spring and intrusion of the river water which function individually or together in different parts of the aquifer. Based on the hydrogeochemical and geological studies conceptual flow models were prepared for different parts of the aquifer which illustrate how each source of salinity deteriorates the quality of the alluvial aquifer. We proposed few remediation methods including construction of cemented channel and sealed basins to improve groundwater quality. These methods would prevent infiltration of low quality water into the alluvial aquifer.  相似文献   

5.
Groundwater salinization of the Sfax superficial aquifer,Tunisia   总被引:5,自引:0,他引:5  
Groundwater salinization has become a crucial environmental problem worldwide and is considered the most widespread form of groundwater contamination. The origin of salinity in the coastal aquifer of the Sfax Basin, Tunisia was investigated by means of chemical analyses of groundwater samples from 65 wells. The groundwater samples present a clear gradation from calcium sulphate salinization to that of sodium chloride. The saturation indices for calcite and gypsum, and binary diagrams of different ions, together with multivariate analysis, indicate the existence of various salinization processes such as: dissolution of gypsum and calcite dispersed through the reservoir rock; ion exchange; intensive agricultural practices that produce effluents that infiltrate to the saturated zone; and sea-water intrusion, enhanced by excessive withdrawal of groundwater.  相似文献   

6.
As in many other semi-arid regions, the Plio-quaternary aquifer of the eastern coast of Cap Bon peninsula (NE Tunisia) shows a parallel increase in overexploitation and mineralization of groundwater resources and so the water quality is deteriorating. Different methods using geochemistry (ions Na+, Cl, Ca2+, Mg2+, Br) and stable isotopes (18O, 2H) are compared with the hydrodynamic information for identifying the main processes involved in the increase of salinization. Along the coast, intrusion of seawater resulting from groundwater overexploitation is identified, but is not the only cause of qualitative degradation: the development of irrigation that induces soil leaching and transfer of fertilizers to groundwater over the whole aquifer extent is another major reason for the increase in salinization. A total of 48 groundwater wells were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies.  相似文献   

7.
Overexploitation of shallow aquifers on the Syrian coast, north of Latakia (Damsarkho) for irrigation and tourism has caused an intrusion of seawater. The seawater intrusion into this aquifer has been presented by a three-dimensional finite element model using the FEFLOW numerical code. This conceptual model is based on field and laboratory data collected during the period 1966–2003. Meteoric infiltration and flows from the adjoining carbonate aquifer recharge the aquifer; natural outflow occurs through a diffuse flow into the sea; and artificial outflow occurs through intensive extraction of groundwater from wells. Water exchanges in the aquifer occur naturally (leakage) and artificially (multi-screened wells). The model was calibrated for transient conditions. The model helped establish that seawater intrusion is essentially due to withdrawals near the coast during the irrigation season and that it mainly occurs in the Damsarkho plain. The effects of hypothetical aquifer exploitation were assessed in terms of salt budget.  相似文献   

8.
Salinization in coastal aquifers is usually related to both seawater intrusion and water–rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl?, Na+, Ca2+, Mg2+ and SO 4 2– ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.  相似文献   

9.
The Quaternary coastal plain aquifer down gradient of the Wadi Watir catchment is the main source of potable groundwater in the arid region of south Sinai, Egypt. The scarcity of rainfall over the last decade, combined with high groundwater pumping rates, have resulted in water-quality degradation in the main well field and in wells along the coast. Understanding the sources of groundwater salinization and amount of average annual recharge is critical for developing sustainable groundwater management strategies for the long-term prevention of groundwater quality deterioration. A combination of geochemistry, conservative ions (Cl and Br), and isotopic tracers (87/86Sr, δ81Br, δ37Cl), in conjunction with groundwater modeling, is an effective method to assess and manage groundwater resources in the Wadi Watir delta aquifers. High groundwater salinity, including high Cl and Br concentrations, is recorded inland in the deep drilled wells located in the main well field and in wells along the coast. The range of Cl/Br ratios for shallow and deep groundwaters in the delta (∼50–97) fall between the end member values of the recharge water that comes from the up gradient watershed, and evaporated seawater of marine origin, which is significantly different than the ratio in modern seawater (228). The 87/86Sr and δ81Br isotopic values were higher in the recharge water (0.70,723 < 87/86Sr < 0.70,894, +0.94 < δ81Br < +1.28‰), and lower in the deep groundwater (0.70,698 < 87/86Sr < 0.70,705, +0.22‰ < δ81Br < +0.41‰). The δ37Cl isotopic values were lower in the recharge water (−0.48 < δ37Cl < −0.06‰) and higher in the deep groundwater (−0.01 < δ37Cl < +0.22‰). The isotopic values of strontium, chloride, and bromide in groundwater from the Wadi Watir delta aquifers indicate that the main groundwater recharge source comes from the up gradient catchment along the main stream channel entering the delta. The solute-weighted mass balance mixing models show that groundwater in the main well field contains 4–10% deep saline groundwater, and groundwater in some wells along the coast contain 2–6% seawater and 18–29% deep saline groundwater.A three-dimensional, variable-density, flow-and-transport SEAWAT model was developed using groundwater isotopes (87Sr/86Sr, δ37Cl and δ81Br) and calibrated using historical records of groundwater level and salinity. δ18O was used to normalize the evaporative effect on shallow groundwater salinity for model calibration. The model shows how groundwater salinity and hydrologic data can be used in SEAWAT to understand recharge mechanisms, estimate groundwater recharge rates, and simulate the upwelling of deep saline groundwater and seawater intrusion. The model indicates that most of the groundwater recharge occurs near the outlet of the main channel. Average annual recharge to delta alluvial aquifers for 1982 to 2009 is estimated to be 2.16 × 106 m3/yr. The main factors that control groundwater salinity are overpumping and recharge availability.  相似文献   

10.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

11.
In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200–300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.  相似文献   

12.
Salinization is a process impacting groundwater quality and availability across much of southern Louisiana, USA. However, a broad divergence of opinion exists regarding the causes of this elevated salinity: updip-migrating marine waters from the Gulf of Mexico, saline fluids migrating up fault planes, movement of water from salt domes, and/or remnant seawater from the last major marine transgression. The Mississippi River Alluvial Aquifer (MRAA) in south-central Louisiana is recharged by the Mississippi River, and there are discharge zones to the west and east. Recharge waters from the Mississippi River are fresh, but Cl levels in the western portions of the aquifer are as high as 1000 mg/L. The aquifer is an important source of water for several municipalities and industries, but prior to this study the source(s) of the elevated salinity or whether the salinization can be remediated had not been determined.The low Br/Cl ratios in the groundwaters are consistent with a saline endmember produced by subsurface dissolution of salt domes, not a marine source. The H and O isotopic systematics of the aquifer waters indicate meteoric sources for the H2O, not marine waters or diagenetically-altered deep brines. The westward salinization of aquifer water represents a broad regional process, instead of contamination by point sources. Mapping of spatial variations in salinity has permitted the identification of specific salt domes whose subsurface dissolution is producing waters of elevated salinity in the aquifer. These include the Bayou Choctaw and St. Gabriel domes, and possibly the Bayou Blue dome. Salinization is a natural, on-going process, and the potential for remediation or control is slight, if not non-existent.  相似文献   

13.
The natural and pumping-induced controls on groundwater salinization in the coastal aquifers of North Carolina, USA, and the implications for the performance of a reverse osmosis (RO) desalination plant have been investigated. Since installation of the well field in the Yorktown aquifer in Kill Devil Hills of Dare County during the late 1980s, the groundwater level has declined and salinity of groundwater has increased from ??1,000 to ??2,500 mg/L. Geochemical and boron isotope analyses suggest that the salinity increase is derived from an upflow of underlying saline groundwater and not from modern seawater intrusion. In the groundwater of four wells supplying the plant, elevated boron and arsenic concentrations were observed (1.3?C1.4 mg/L and 8?C53 ??g/L, respectively). Major ions are effectively rejected by the RO membrane (96?C99% removal), while boron and arsenic are not removed as effectively (16?C42% and 54?C75%, respectively). In coming decades, the expected rise of salinity will be associated with higher boron content in the groundwater and consequently also in the RO-produced water. In contrast, there is no expectation of an increase in the arsenic content of the salinized groundwater due to the lack of increase of arsenic with depth and salinity in Yorktown aquifer groundwater.  相似文献   

14.
Azraq Oasis in the eastern Jordanian desert is an important freshwater resource of the country. Shallow groundwater reserves are heavily exploited since the 1980s and in consequence the groundwater table dropped significantly. Furthermore, some wells of the major well field drilled into the shallow aquifer show an increasing mineralization over the past 20 years. A previous study using conventional tracers did not result in a satisfactory explanation, from where the salt originates and why only a few wells are affected. In this study, the application of dissolved noble gases in combination with other tracer methods reveals a complex mixing pattern leading to the very localized salinization within the well field. It is found that primarily the wells affected by salinization 1) contain distinctly more radiogenic 4He than the other wells, indicating higher groundwater age, and 2) exhibit 3He/4He ratios that argue for an imprint of deep fluids from the Earth's mantle.However, the saline middle aquifer below is virtually free of mantle helium, which infers an upstream from an even deeper source through a nearby conductive fault. The local restriction of the salinization process is explained by the wide range of permeabilities of the involved geologic units. As the wells abstract water from the whole depth profile, they initially pump water mainly from the well conductive top rock layer. As the groundwater table dropped, this layer fell progressively dry and, depending on the local conductivity profile, some wells began to incorporate more water from the deeper part of the shallow aquifer into the discharge. These are the wells affected by salinization, because according to the presented scheme the deep part of the shallow aquifer is enriched in both salt and mantle fluids.  相似文献   

15.
Overextraction of groundwater is widely occurring along the coast where good quality groundwater is at risk, due to urbanization, tourist development and intensive agriculture. The Sabratah area at the northern central part of Jifarah Plain, Northwest Libya, is a typical area where the contamination of the aquifer in the form of saltwater intrusion, gypsum/anhydrite dissolution and high nitrate concentrations is very developed. Fifty groundwater samples were collected from the study area and analysed for certain parameters that indicate salinization and pollution of the aquifer. The results demonstrate high values of the parameters electrical conductivity, sodium, potassium, magnesium, chloride and sulphate which can be attributed to seawater intrusion. The intensive extraction of groundwater from the aquifer reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to as much as 30 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for the high nitrate concentration towards the south of the region. Seawater intrusion and deep salt water upconing result in general high SO4 2? concentrations in groundwater near the shoreline, where localized SO4 2? anomalies are also due to the dissolution of sebkha deposits for few wells in the nearby sebkhas. Upstream, the increase in SO4 2? concentrations in the south is ascribed to the dissolution of gypsum at depth in the upper aquifer.  相似文献   

16.
 The coastal aquifer of Oropesa is affected by salinization processes undoubtedly associated with intense groundwater exploitation for agriculture supply. The aquifer corresponds geologically to a tectonic depression with Plioquaternary fill. Hydrogeologically, this aquifer is detrital, with intergranular porosity, which receives substantial recharge from adjacent Mesozoic aquifers. Contact with the sea, in addition to the presence of cultivated soil requiring extreme exploitation of groundwater, frequently give rise to processes of seawater intrusion. The present research is an attempt to understand the saltwater intrusion in this aquifer, using hydrochemical analyses of the behavior of certain minor ions that could help in the characterization process. In the case of the Oropesa sector, groundwater salinization does not appear to be attributable solely to the intrusion of seawater, but there are also anomalies related largely to the geology of the sector and its surroundings, the type of recharge, the hydrodynamic conditions in the specific area, etc. Received: 23 January 1995 · Accepted: 12 September 1995  相似文献   

17.
Korba aquifer is one of the most typical examples of overexploited coastal aquifer in the Mediterranean countries. In fact, from 1985, a considerable piezometric level drop, water salinization, and seawater intrusion were registered in the aquifer. In December 2008, Tunisian authorities initiated a general plan to groundwater management in order to augment groundwater resources, restore the piezometric levels, and improve water quality. The plan consists of artificial recharge of groundwater used treated wastewater through three infiltration basins. During the first 4 years (from December 2008 to December 2012), 1.41 Mm3 of treated wastewater was injected to the Korba aquifer. This study presents a hydrogeological assessment of groundwater evolution during the recharge processes. In this study, 32 piezometric and chemical surveys of 70 piezometers and observed wells are used to present hydrogeological investigation and water quality evolution of wastewater reuse through artificial recharge in Korba coastal aquifer. The piezometric evolution maps are used to specify the positive effect in groundwater level that exceeding 1.5 m in some regions. The interpretation of salinity evolution maps are used to indicate the improving of groundwater quality.  相似文献   

18.
Urban and industrial development and the expansion of irrigated agriculture have led to a drastic increase in the exploitation of groundwater resources. The over-exploitation of coastal aquifers has caused a seawater intrusion and has seriously degraded groundwater quality. The shallow coastal aquifer of the Djeffara plain, southeastern Tunisia constitutes an example of water resource suffering an intensive and uncontrolled pumping for irrigation. Intensive exploitation of the aquifer and climate aridity caused a decrease in piezometric level and an increase in salinity. According to the hydrochemical data (Cl, SO4 2−, NO3 , HCO3 , Br, Ca2+, Mg2+, Na+, K+) and the stable isotope composition (oxygen-18 and deuterium content), groundwater salinization in the investigated system is caused by three main processes: (i) salts dissolution especially in the central part of Jerba and around Medenine plain; (ii) evaporation process; and (iii) seawater intrusion which caused the increase in salinity in the peninsula of El Jorf, in Jerba and in the North of Ben Gardane.  相似文献   

19.
In the Djerid-Nefzaoua region, southern Tunisia, about 80% of agricultural and domestic water supply is provided by the complex terminal (CT) aquifer. However, 20% of this demand is provided by other hydraulically connected aquifers, namely the continental intercalaire (CI) and the Plio-Quaternary (PQ). Overexploitation of the CT aquifer for agricultural practices has contributed to the loss of the artesian condition and the decline of groundwater level which largely increased the downward leakage from the shallow PQ aquifer. Excess irrigation water concentrates at different rates in the irrigation channels and in the PQ aquifer itself. Then, it returns to the CT aquifer and mixes with water from the regional flow system, which contributes to the salinization of the CT groundwater. A geochemical and isotopic study had been undertaken over a 2-years period in order to investigate the origin of waters pumped from the CT aquifer with an emphasis on its hydraulic relationships with the underlying and the overlying CI and PQ aquifers. Geochemistry indicates that groundwater samples collected from different wells show an evolution of the water types from Na-Cl to Ca-SO4-Cl. Dissolution of halite, gypsum and anhydrite-bearing rocks is the main mechanism that leads to the salinization of the groundwater. Isotopic data indicate the old origin of all groundwater in the aquifer system. Mixing and evaporation effects characterizing the CT and the PQ aquifers were identified using δ2H and δ18O relationship and confirmed by the conjunction of δ2H with chloride concentration.  相似文献   

20.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号