首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study has been to set the system of differential equations which govern the precession and nutation of self-gravitating globes of compressible viscous fluid, due to the attraction exerted on the rotating configuration by its companion; and to construct their approximate solution which are correct to terms of the second order in small dependent variables of the problem. Section 2 contains an explicit formulation of the effects of viscosity arising in this connection, given exactly as far as the viscosity remains a function of radial distancer only; but irrespective of its magnitude. In Section 3 the equations of motion will be linearized for the case of near-circular orbits and small inclinations andi of the equator of the rotating configuration, and of its orbital plane, to the invariable plane of the system; while in Section 4 further simplifications will be introduced which are legitimate for studies of secular (or long-periodic) motions of the nodes and inclinations. The actual solutions of so simplified a system of equations are constructed in Section 5; and these represent a generalization of the results obtained in our previous investigation (Kopal, 1969) of the inviscid case.The physical significance of the new results will be discussed in the concluding Section 6. It is demonstrated that the axes of rotation of deformable components in close binary systems are initially inclined to the orbital plane, viscous dissipation produced by dynamical tides will tend secularly to rectify their positions until perpendicularity to the orbital plane has been established, and the equators as well as orbit made to coincide with the invariable plane of the system-in a similar manner as other effects of tidal friction are bound eventually to synchronize the velocity of axial rotation with that of orbital revolution in the course of time.An application of the results of the present study to the dynamics of the Earth-Moon system discloses that the observed inclination of 1°.5 of the lunar equator to the ecliptic cannot be regarded as being secularly constant, but representing the present deviations from perpendicularity of oscillatory motion of very long period.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR-09-051-001 with the National Aeronautics and Space Administration. This paper constitutes the Lunar Science Institute Contribution No. 85.  相似文献   

2.
In preceding papers of this series (Kopal, 1968; 1969) the Eulerian equations have been set up which govern the precession and nutation of self-gravitating fluid globes of arbitrary structures in inertial coordinates (space-axes) as well as with respect to the rotating body axes; with due account being taken of the effects arising from equilibrium as well as dynamical tides.In Section 1 of the present paper, the explicit form of these equations is recapitulated for subsequent solations. Section 2 contains then a detailed discussion of the coplanar case (in which the equation of the rotating configuration and the plane of its orbit coincide with the invariable plane of the system); and small fluctuations in the angular velocity of axial rotation arising from the tidal breathing in eccentric binary systems are investigated.In Section 3, we consider the angular velocity of rotation about theZ-axis to be constant, but allow for finite inclination of the equator to the orbital plane. The differential equations governing such a problem are set up exactly in terms of the time-dependent Eulerian angles and , and their coefficients averaged over a cycle. In Section 4, these equations are linearized by the assumption that the inclinations of the equator and the orbit to the invariable plane of the system are small enough for their squares to be negligible; and the equations of motion reduced to their canonical form.The solution of these equations — giving the periods of precession and nutation of rotating components of close binary systems, as well as the rate of nodal regression which is synchronised with precession — are expressed in terms of the physical properties of the respective system and of its constituent components; while the concluding Section 6 contains a discussion of the results, in which the differences between the precession and nutation of rigid and fluid bodies are pointed out.  相似文献   

3.
The aim of the present paper will be to deduce the explicit form of differential equations which govern dynamical tides in close binary systems, with simplifications which are permissible for the mass-point model (Section 2), as well as for one exhibiting finite but high internal density concentration (Section 3). It is pointed out that, whereas the exact formulation of the problem leads to a simultaneous system of equations of sixth order (fourth in the inviscid case), this order reduces to four (or two for inviscid fluids) for the mass-point model; and to five (three for inviscid case) if the density concentration is high but finite.In the last section of this paper the coefficientsC i,j which specify the amplitudes of the individual partial tides are explicitly formulated as functions of the time.  相似文献   

4.
The aim of the present paper will be to give a mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum — an evolution activated by viscous friction of dynamical tides raised by the two components on each other. The first section contains a general outline of the problem; and in Section 2 we shall establish the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure. In Section 3 we shall investigate the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for given amount of total momentum; while in Section 4 we shall compare these results with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known to us from evidence furnished by the observed rates of apsidal advance.The results show that all such systems — be these of detached or semi-detached type — disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than a percent of the total — a situation characteristic of a state close to the minimum energy for given total momentum. This appears, moreover, to be true not only of the systems with both components on the Main Sequence, but also of those possessing evolved components in contact with their Roche limits.Under such conditions, a synchronism between rotation and revolution (characteristic of both extreme states of maximum and minimum energy) is not only possible, but appears to have been actually approached — if not attained — in the majority of cases. In other words, it would appear that — in at least a large majority of known cases — the existing close binaries have already attained orbits of maximum distension consistent with their momenta; and tidal evolution alone can no longer increase the present separations of the components to any appreciable extent.The virtual absence, in the sky, of binary systems intermediate between the stages of maximum and minimum energy for given momentum leads us to conjecture that the process of dynamical evolution activated by viscous tides may enroll on a time-scale which is relatively short in comparison with their total age — even for systems like Y Cygni or AG Persei, whose total age can scarcely exceed 107 yr. A secular increase of the semi-major axes of relative orbits is dynamically coupled with a corresponding variation in the velocity of axial rotation of both components through the tidal lag arising from the viscosity of stellar material. The differential equations of so coupled a system are given in Section 5; but their solution still constitutes a task for the future.The Lunar Science Institute Contribution No. 90. The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

5.
6.
The aim of the present paper will be to detail the explicit form of the equations which govern first-order oscillations of fast-rotating globes of self-gravitating fluids; with due account taken of the effects arising from the centrifugal as well as Coriolis force. As such configurations oscillate in general about distorted figures of equilibrium, the equations governing them can be conveniently expressed in terms of the Clairaut coordinates, associated with distorted spheroidal figures, and introduced in our previous paper (Kopal, 1980) for this purpose.In Section 2 which follows a brief outline of our problem, the equilibrium properties of fast-rotating configurations or arbitrary structure will be formulated. In Section 3 we shall carry out a separation of the variables in the equations of motion, and reduce the partial differential equations of the problem to an equivalent system of ordinary differential equations, by an expansion of expressions for the velocity componentsU, V, W in terms of tesseral harmonicsY n m (, ). The explicit form of such a system, including the effects of all tesseral harmonics of orders up tom=n=4, will be specified in Section 3 for configurations whose equilibrium form is a sphere; while in Section 4 this latter condition will be relaxed to allow for the equilibrium configuration to become a rotational spheroid.In the concluding Section 5 we shall convert the complex form of our equations of motion into real terms, amenable to a solution-analytical or numerical-in terms of real variables; and shall establish the boundary conditions necessary for a specification of the characteristic frequencies of oscillation.  相似文献   

7.
The aim of this investigation is to present the periodic and secular perturbations of the orbital elements of close binary systems due to tidal lag in latitude. The variational equations of the problem of plane motion will be set up in terms of the rectengular componentsR, S, andW of the disturbing accelerations. These equations are highly nonlinear with respect to the orbital elements and we present analytic approximations to the effects produced by the perturbing acceleration due to dynamical tides lagging in latitude. The perturbed elements of the orbit have been expressed by means of Hansen coefficients in the compact form of summations.  相似文献   

8.
In a previous paper of this series (Kopal, 1968a) the Eulerian equations have been set up which govern the precession and nutation of selfgravitating bodies of viscous fluid in inertial coordinates which are at rest in space. In order to facilitate their solution, in the present investigation we shall transform these equations to the rotating body-axes; and shall explicitly evaluate all their coefficients arising as a result of second-harmonic dynamical tides.Following the introductory Section 1 which contains a mathematical statement of the problem, the requisite transformation of coordinates will be outlined in Section 2, and applied to the equations of motion in Section 5. The corresponding moments and products of inertia appropriate for selfgravitating configurations of arbitrary internal structure will be formulated in Section 4; while the deformation terms arising from second-harmonic dynamical tides raised on centrally-condensed configurations will be evaluated in Sections 3 and 6. The concluding Section 7 will then contain a specification of the components of the disturbing force.The next stage of our investigation — namely, a construction of the actual solutions of the equations governing precession and nutation of fluid bodies in different cases of astrophysical interest — has been postponed for a separate paper.  相似文献   

9.
The aim of the present paper will be to develop from the fundamental equations of hydrodynamics a theory of dynamical tides in close binary systems, the components of which are regarded to consist of heterogeneous viscous fluid, and to revolve around their common centre of gravity in eccentric orbits; moreover, the equatorial planes of their axial rotation and the orbital plane need not be co-planar, but all may be inclined to the invariable plane of the system of arbitrary amounts. The changes in the pressure or density invoked by time-dependent deformation will be regarded as adiabatic; but, in the equilibrium state, both the density and viscosity of the material of our components may be arbitrary functions of the radial distance.Following a brief exposition in Section 2 of the fundamental equations linearized to small oscillations — be these free or forced — in Section 3 we shall particularize them to describe spheroidal deformations; with due regard to all terms arising from viscosity. Section 4 will contain a specification of the boundary conditions to be imposed upon such oscillations; and in Section 5 we shall solve the problem of non-radial oscillations of self-gravitating inviscid configurations in terms of hypergeometric series. The remaining Sections 6–8 will be devoted to a discussion of the phenomena arising from viscosity: in particular, we shall solve in a closed form the problem of non-radial oscillations of incompressible viscous globes in the terms of Bessel functions. It will be shown that the effect of viscosity — like those of compressibility — tend to de-stabilize all non-radial oscillations of homogeneous configurations.At the other extreme, a similar treatment of a mass-point model — as well as of one exhibiting high but finite degree of central condensation — is being postponed for a subsequent communication.  相似文献   

10.
Differential equations governing the dynamical tides in close binary systems consisting of centrally condensed components of viscous gas are split up (Section 2) in their real and imaginary parts, the ratio of which defines the tidal lag. In Sections 3 and 4 these equations will be particularized to a case in which the central mass-point of each star is surrounded by an evanescent envelope the density of which decreases as the inverse square of the central distance. It is shown that self-gravitating configurations built up in accordance with this model are incapable of performing free nonradial oscillations with a frequency comprised between 0 2 ; but explicit expressions for forced oscillations representing dynamical tides are given for an arbitrary form of the external field of force. Equations for the imaginary components of the displacement, constructed for the same model in Section 4, disclose that if the viscosity of stellar material is identified with that of hydrogen plasma, the tidal lag due to a viscous dissipation of kinetic energy may produce dynamical effects, the cumulative outcome of which becomes appreciable on the Kelvin time-scale, but over short intervals of time their stationary photometric effects should be negligible. The latter can become observationally significant only for stars in which turbulent viscosity under near-adiabatic conditions becomes and important factor.  相似文献   

11.
Future missions to the Moon should include a detailed high-resolution global gravity survey from a low (15–30 km) polar orbiting spacecraft. The use of gravity gradiometer instruments on board the spacecraft will give higher-resolution data at lower total mission cost that the present Doppler tracking technique. Simulations show that although a three axis gradiometer system is preferred, and can even be used to estimate spacecraft attitude and altitude variation, a properly oriented single rotating gravity gradiometer can be used to resolve closely spaced mascons in both the along-track and cross-track directions.Paper presented at theFuture Lunar Exploration session of the Tenth Lunar and Planetary Science. Conference, Johnson Space Center, Houston, Texas, 19–23 March 1979.  相似文献   

12.
The aim of the present paper will be to investigate the circumstances under which an irreversible dissipation of the kinetic energy into heat is generated by the dynamical tides in close binary systems if (a) their orbit is eccentric; (b) the axial rotation of the components is not synchronized with the revolution; or (c) the equatorial planes are inclined to that of the orbit.In Section 2 the explicit form of the viscous dissipation function will be set up in terms of the velocity-components of spheroidal deformation arising from the tides; in Section 3, the principal partial tides contributing to the dissipation will be detailed; Section 4 will be devoted to a determination of the extent of stellar viscosity — both gas and radiative; while in the concluding Section 5 quantitative estimates will be given of the actual rate at which the kinetic energy of dynamical tides gets dissipated into heat by viscous friction in stellar plasma.The results disclose that the amount of heat produced per unit time by tidal interaction between components of actual close binaries equals only about 10–10th part of their nuclear energy production; and cannot, therefore, affect the internal structure of evolution of the constituent stars to any appreciable extent. Moreover, it is shown that the kinetic energy of their axial rotation can be influenced by tidal friction only on a nuclear, rather than gravitational (Kelvin) time-scale — as long as plasma or radiative viscosity constitute the sole sources of dissipation. However, the emergence of turbulent viscosity in secondary components of late spectral types, which have evolved away from the Main Sequence, can accelerate the dissipation 105–106 times, and thus give rise to appreciable changes in the elements of the system (particularly, in the orbital periods) over time intervals of the order of 105–106 years. Lastly, it is pointed out that, in close binary systems consisting of a pair of white dwarfs, a dissipation of the kinetic energy through viscous tides in degenerate fermion-gas could produce enough heat to account, by itself, for the observed luminosity of such objects.  相似文献   

13.
We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes t = 4.57 × 109 yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than P orb ≈ 2.8 days. Planets of one Jupiter mass with an orbital period P orb ≈ 2 days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.  相似文献   

14.
In a preceding paper (Kopal, 1969; in what follows referred to as Paper I) we introduced a new system of curvilinear coordinates-hereafter referred to as Roche Coordinates — in which spheres of constant radius in spherical polars have been replaced by surfaces of constant potential of a rotating gravitational dipole; while the angular coordinates are orthogonal to the equipotentials. In Paper I we established an explicit form of such a transformation, and related the Roche coordinates with polar coordinates (with which they coalesce in the immediate neighbourhood of each one of the two finite mass-points) in the plane case. The aim of the present investigation will be to generalize the definition of the Roche coordinates to three dimensions.The opening Section 1 of this paper will contain a general outline of the proposed three-dimensional transformation; and in Section 2 details of this transformation will be explicitly worked out correctly to quantities of first order in superficial distortion — an approximation which should prove adequate in regions surrounding the two finite masses; while in Section 3 we shall evaluate (to this degree of accuracy) the metric coefficients of the respective transformation, and its direction cosines, in both polar and curvilinear coordinates. Section 4 will then contain a formulation of the fundamental equations of hydrodynamics in terms of the three-dimensional Roche coordinates; and their advantages for a treatment of certain classes of dynamical problems encountered in doublestar astronomy will be illustrated in the concluding Section 5 by an investigation of the vibrational stability of the Roche model. We shall show that this model is capable of performing free radial oscillations which remain barotropic only if its equilibrium form is spherical (i.e., in the absence of any external mass in the neighbourhood); but not if it is distorted to any extent by rotation or tides.  相似文献   

15.
The infrared spectra between 2 and 13 m of a variety of objects have become available in the past few years. These spectra have shown many objects to have up to six emission features that are still unidentified. Other objects show absorptions due to ice, carbon monoxide, silicates, and two unidentified features. The observational characteristics of the unidentified features are discussed here, together with several possible identifications.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

16.
The aim of the present paper will be to extend the Fourier methods of analysis of the light curves of eclipsing binaries, outlined in our previous communication (Kopal, 1975) in connection with systems whose components would appear as uniformly bright discs, to systems whose components exhibit discs characterized by an arbitrary radially-symmetrical distribution of brightness —i.e., an arbitrary law of darkening towards the limb — be it linear or nonlinear.In Section 2 which follows a few brief introductory remarks, fundamental equations will be set up which govern the light changes arising from the mutual eclipses of limb-darkened stars — be such eclipses total, partial or annular; and Section 3 will contain a closed algebraic solution for the elements of the occulation eclipses terminating in total phase. Such a solution proves to be no more complicated than it turned out to be for uniformly bright discs in our previous paper; and calls for no special functions for the purpose — as will be put in proper perspective in the concluding Section 4.The cases of transit eclipses terminating in an annular phase, of partial eclipses of occulation or transit type, will be similarly dealt with by Fourier methods in the next paper of the present series.  相似文献   

17.
The effects of solid and ocean tides have been computed on the right ascension of the ascending node of the two LAGEOS and LARES satellites and on the argument of pericenter of LAGEOS II. Their effects—together with the possible mis-modeling related to systematic errors in the estimate of the tidal coefficients, especially in the case of ocean tides—are quite important to be well established for the key role of the LAGEOS satellites, as well as of the newly LARES, in space geodesy and geophysics as well as in fundamental physics measurements. In the case of the measurement of the Lense–Thirring effect, the mis-modeling of long-period tides may mimic a secular effect on the cited orbital elements, thus producing a degradation in the measurement of the relativistic precession. A suitable combination of the orbital elements of the three satellites can help in avoiding the effects of the long-period tides of degree \(\ell =2\) (as for the Lunar solid tides with periods of 18.6 and 9.3 years) and \(\ell =4\), but other long-period tides, as the ocean \(K_1\) tide, which has the same periodicities of the right ascension of the ascending node \(\varOmega \) of the satellites, may strongly influence the measurement, especially if it is performed over a relatively short time span. These results are particularly important in the case of LARES, since they are new and because of the role that the orbit of LARES, and especially of its ascending node right ascension, will have in a new measurement of the Lense–Thirring effect by the joint analysis of its orbit with that of the two LAGEOS.  相似文献   

18.
Some physical, chemical and optical properties of mixed oxide grain material are discussed and the formation of such dust is examined. Surface chemistry on these grains may be responsible for the selective depletion of elements and for the formation of molecules such as H2CO in diffuse clouds. Spectra of mixed oxide grains yield features at 9.6 and 18 m together with a broad band at 4.6 m–1.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

19.
The infrared properties of dust in space, as inferred from infrared observations at low to moderate spectral resolution at wavelengths 30 m are summarized. Condensates at high temperature: featureless material and silicon carbide; moderate temperature: silicates; and low temperature — ices are briefly discussed. Strong band emission from as yet unknown species has been detected in a variety of objects. Episodes of rapid dust formation have been recorded in the infrared spectra of certain eruptive variable stars, including classical novae. Observations of this class of objects promises to provide information on grain nucleation and growth.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

20.
Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments — including planetary magnetospheres, the heliosphere and the interstellar medium — are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号