首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tu  C.-Y.  Marsch  E. 《Solar physics》1997,171(2):363-391
A model of the solar corona and wind is developed which includes for the first time the heating and acceleration effects of high-frequency Alfvén waves in the frequency range between 1 Hz and 1 kHz. The waves are assumed to be generated by the small-scale magnetic activity in the chromospheric network. The wave dissipation near the gyro-frequency, which decreases with increasing solar distance, leads to strong coronal heating. The resulting heating function is different from other artificial heating functions used in previous model calculations. The associated thermal pressure-gradient force and wave pressure-gradient force together can accelerate the wind to high velocities, such as those observed by Helios and Ulysses. Classical Coulomb heat conduction is also considered and turns out to play a role in shaping the temperature profiles of the heated protons. The time-dependent two-fluid (electrons and protons) model equations and the time-dependent wave-spectrum equation are numerically integrated versus solar distance out to about 0.3 AU. The solutions finally converge and settle on time-stationary profiles which are discussed in detail. The model computations can be made to fit the observed density profiles of a polar coronal hole and polar plume with the sonic point occurring at 2.4 R and 3.2 R , respectively. The solar wind speeds obtained at 63 R are 740 km s-1 and 540 km s-1; the mass flux is 2.1 and 2.2 × 108 cm-2 s-1 (normalized to 1 AU), respectively. The proton temperature increases from a value of 4 × 105 K at the lower boundary to 2 × 106 K in the corona near 2 R .  相似文献   

2.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,195(2):319-332
It is shown on the basis of analyzing the LASCO/SOHO data that the main quasi-stationary solar wind (SW), with a typical lifetime of up to 10 days, flows in the rays of the streamer belt. Depending on R, its velocity increases gradually from V3 km s–1 at R1.3 R to V170 km s–1 at R15 R . We have detected and investigated the movement of the leading edge of the main solar wind at the stage when it occupied the ray, i.e., at the formative stage of a quasi-stationary plasma flow in the ray. It is shown that the width of the leading edge of the main SW increases almost linearly with its distance from the Sun. It is further shown that the initial velocity of the inhomogeneities (`blobs') that travel in the streamer belt rays increases with the distance from the Sun at which they originate, and is approximately equal to the velocity of the main solar wind which carries them away. The characteristic width of the leading edge of the `blob' R , and remains almost unchanging as it moves away from the Sun. Estimates indicate that the main SW in the brightest rays of the streamer belt to within distances at least of order R3 R represents a flow of collisional magnetized plasma along a radial magnetic field.  相似文献   

3.
Observations are presented of emission line resonance polarization in Fe xiii 10747 at the total solar eclipse of 12 November 1966. Useful data, with angular resolution 15, describe three quadrants of the corona from 1.08 R to a maximum of 1.6 R . The direction of the electric vector of observed polarization is perpendicular to the solar limb, to the limits of accuracy of measurement, in at least 74% of all cases. Departures in the other points are consistent with the magnetic depolarization expected from the non-radial fields of streamers. Polarizations observed range from near zero at the limb to 80 % and higher at 1.6 R . Averaged polarization is highest in non-streamer regions, where above 1.2 R it suggests pure radiative excitation of the 10747 line. Below 1.2 R , and in a dense streamer, the polarization is significantly depressed, indicating dominant collisional excitation of the line wherever the electron density exceeds 50 × 106 cm–3.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
We have studied the thermonuclear runaways which develop on white dwarfs of 1.205M and 1.358M accreting hydrogen rich material at 10–10 M yr–1. It is found that ignition of this material occurs at densities in excess of about 104 gm cm–3 and that the critical accumulated mass required to initiate the runaway is 0.7(1.5)×10–4 M for a 1.358(1.205)M white dwarf.  相似文献   

5.
Observations of interplanetary scintillation of radio sources are used to estimate the size of plasma irregularities down to a distance of about 6 R from the Sun. This is compared with the values of the ion gyro-radius estimated for a range of distance from 1 AU to about 6 R from the Sun. The results of the calculations are discussed in the context of the hypothesis of plasma instability which is invoked to interpret the observations of the scattering of radio waves in the solar corona and of interplanetary scintillations.  相似文献   

6.
Koomen  M. J.  Howard  R. A.  Michels  D. J. 《Solar physics》1998,180(1-2):247-263
The Naval Research Laboratory (NRL) Solwind coronagraph recorded the outer corona at elongations 2_5 R to 10 R during the 6 1/2-year interval from March 1979, before solar maximum, to the beginning of solar minimum in September 1985. During the minimum period, when the solar magnetic field was dipole-like, the observed corona consisted of the equatorial streamer belt that is characteristic of solar minimum, and that is interpreted as an edgewise view of a nearly flat current sheet or coronal disk lying near the plane of the heliographic equator. The observed disk was a radial projection from the magnetic neutral line that was computed for the 2.5 R source surface surrounding the Sun. At earlier times, shortly after solar maximum, the observed corona often consisted of a single coronal disk similar to that at solar minimum, but strongly tilted to the heliographic equator. Again this disk projected from a tilted magnetic neutral line that was computed for the 2.5 R source surface. Solar rotation allowed this coronal disk to be viewed in all aspects. In the edgewise view it appeared as a tilted streamer belt. In the broadside view the more flower-like pattern of solar maximum was observed. The latter view was interpreted as a non-uniform distribution of coronal material in the thin coronal disk. There were many intervals during the declining phase of the solar cycle when the computed magnetic neutral line at 2.5 R remained relatively simple but was not the source of an observable coronal disk. This latter result was probably because of the limitations of plane-of-sky observations, combined with short-term changes in the corona. Altogether, a single coronal disk, either flat or somewhat convoluted, was recognizable during only one third of the year lifetime of the coronagraph.  相似文献   

7.
    
Chuan-Yi Tu 《Solar physics》1971,109(1):149-186
A new solar wind model has been developed by including in the model the Alfvénic fluctuation power spectrum equation proposed by Tu et al. (1984). The basic assumptions of the model are as follows: (1) for heliocentric distances r > 10 R , the radial variation of the power spectrum of Alfvénic fluctuations is controlled by the spectrum equation (1), (2) for heliocentric distances r < 10 R , the radial variation of the fluctuation amplitude is determined by the Alfvén wave WKB solution, (3) no energy cascades from the low-frequency boundary of the Alfvénic fluctuation power spectrum into the fluctuation frequency range, and the energy which cascades from the high-energy boundary of the spectrum into the higher frequency range is transported to heat of the solar wind flow. Some solutions of this model which, on one hand, describe the major properties of the Alfvénic fluctuations and the high-speed flow observed by Helios in the space range between 0.3–1 AU and, on the other hand, are consistent with the observational constraints at the coronal base have been obtained under the following conditions: (1) the spectrum index of the fluctuations is near to -1 for almost the whole frequency range at 10 R , (2) the particle flux density at 1 AU is not greater than 3 × 108 cm–2 s–1, (3) the solution is for spherically-symmetric flow geometry or the solution passes through the outermost of the three critical points of the rapidly diverging flow geometry with f max = 7. Some solutions passing through the innermost critical point of the rapidly diverging flow geometry with f max = 7 have been found, however, with too low pressure at the coronal base to compare with the observational constraints. Heat addition or other kind of momentum addition for r < 10 R is required to modify this model to yield better agreement with observations. A cascade energy flux function which leads to Kolmogorov power law in the high-frequency range of Alfvénic fluctuations is presented in Appendix A. More detailed discussions about the characteristics, the boundary conditions and the solution of the spectrum equation (1) are given in Appendix B.Projects supported by the Science Fund of the Chinese Academy of Sciences.  相似文献   

8.
Evolutionary tracks up to the point of dynamical instability are obtained for isentropic objects with rest masses ranging from 102 M to 107 M . Accurate values for the red shift, specific entropy, luminosity and effective temperature at the onset of collapse are given.  相似文献   

9.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

10.
Egil Leer 《Solar physics》1974,35(2):467-480
A one-fluid model of the solar atmosphere is considered. The corona is heated by waves propagating out from the Sun, and profiles for temperature, flow speed and number density are obtained. For a relatively quiet Sun the inwards heat flux in the inner corona is constant in T 5–6 × 105 K and the temperature maximum is reached for r — R = 0.4 — 0.5 R where R is the solar radius. The number density in the inner corona decreases with an increasing particle flux.  相似文献   

11.
Steven T. Suess 《Solar physics》1982,75(1-2):145-159
Polar coronal plumes are modeled using concentrations of magnetic flux at 1.01R , and assuming the field is current-free, or a potential field. Identifying the density enhancement of plumes with magnetic flux concentration produces good agreement between 1.01R and 1.10R , for model conditions of a large background magnetic field and a plume separation of 50 000 to 70 000 km at the base. Beyond 1.10R , both plumes and the potential field diverge very nearly as r 2.Also Department of Astrogeophysics, University of Colorado, Boulder, Colo. 80309, U.S.A. Presently visiting Stanford University Institute for Plasma Research, Via Crespi, Stanford, Calif. 94303, U.S.A.  相似文献   

12.
By analysing a sample of 158 globular clusters belonging to the galaxy M 31 or Andromeda Nebula (AN) in the framework of a spherically symmetric model with constant circular velocity a value of 260 ± 40 kms–1 for this quantity is obtained. It is also found that the number density of AN globulars roughly decreases as the cube of the distance to the centre with a cutoff radius of about 40 kpc. The implied AN mass within this cutoff is about 0.6 TM (1 TM = 1012 M ). Bearing in mind the model limitations this mass is rather an upper limit. The present results suggest 1.5 as a probable value for the mass ratio of AN to the Milky Way unless their massive dark coronae are significantly different in size.The velocity distribution of AN globulars seems to be close to isotropic.  相似文献   

13.
A hydrodynamic calculation of a 1.42M white dwarf supernova is described. Instability and collapse are initiated by electron capture and the subsequent nuclear detonation of C12 at high densities is sufficient to disperse all the material of the star with an average velocity of 7000 km/secOf the National Bureau of Standards and University of Colorado.  相似文献   

14.
The published photometric and spectroscopic data of the symbiotic binary V 1329 Cyg are interpreted. It is shown, that V 1329 Cyg is an eclipsing binary with an elliptical orbit orbit (e=0.28). The cooler component fills up the Roche-lobe at periastron. A model of moving gaseous structures in the system is proposed and their influence on the radial velocity curve is shown. The following characteristics of the system are derived: the cooler component is an M6 giant with mass 7.9M , radius 339R and luminosityM bol=–5.42, the hot component is a white dwarf surrounded by an accretion disk. The mean distance between the components is 842R and in periastron it decreases to 605R .  相似文献   

15.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R , the major axis scattering angle is 0.7 at =6 cm and it varies with heliocentric distance asR –1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized to =20 cm, has a value 20±7 at 5R and varies with heliocentric distance asR –3. Comprison with earlier results suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scales sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are 1 km at 2R and 4 km at 13R . These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   

16.
By analyzing observational data, it has been possible to determine quantitative relationships that represent the role of the interaction of fast and slow solar wind (SW) streams in the formation of characteristic SW properties at the Earth's orbit.It is shown that maximum values of magnetic field B M and density n M peaks in the neighbourhood of the sector boundary (SB) at the base of the high-speed stream front are associated with solar wind characteristics such as the SW minimum velocity near the SB, V m, the maximum velocity in the central part of the fast stream, V M, and the slope of the magnetic field neutral line to the solar equatorial plane at R = 2.5 R (R is the solar radius).It is concluded that enhancements of absolute values of the z-component of the magnetic field, ¦B z¦, recorded at the Earth's orbit, are largely attributable, at sufficiently large values of , to the interaction of different-velocity SW streams.  相似文献   

17.
A unique combination of photographic and K-coronameter data were used to study the structure and evolution of two known coronal streamers. In addition, two other K-coronameter enhancements were studied as representing ideal second examples of the known streamers. As a general rule the observations indicate that these features were direct coronal manifestations of photospheric bipolar magnetic regions (BMR) and were of two basic types:active region, by which is meant a coronal streamer which develops radially over a low-latitude active region; andhelmet which denotes a streamer whose structure and development appear to be a consequence of a long-lived complex of activity, composed of both trailing magnetic fields and a parent center of disk activity.The similarity of growth rates during the first solar rotation of life led to derivation of a total streamer density of 4–5 × 108 cm–3 atr = 1.125R . This density may represent a characteristic maximum density at the base of streamers. The intensity gradient of the inner (r1.5R ) corona was used to establish a qualitative evolutionary model of streamers which synthesizes the observations. Briefly, streamers initially develop over active regions; the streamer growth rate may be as rapid as the disk activity, or at worst lags flare activity by solar rotation. The streamer can be the cause of interplanetary and geomagnetic effects at 1 AU within a solar rotation after birth. Thereafter the streamer follows an evolution dictated by the underlying solar magnetic fields. In any case the lowest level of the coronal enhancement has a lifetime not exceeding that of the solar disk activity.  相似文献   

18.
We present a study of the outflow velocity of the fast wind in the northern polar coronal hole observed on 21 May 1996, during the minimum of solar activity, in the frame of a joint observing program of the SOHO (Solar Heliospheric Observatory) mission. The outflow velocity is inferred from an analysis of the Doppler dimming of the intensities of the Ovi 1032, 1037 and Hi L 1216 lines observed between 1.5 R and 3.5 R with the Ultraviolet Coronagraph Spectrometer (UVCS), operating onboard SOHO. The analysis shows that for a coronal plasma characterized by low density, as derived for a polar hole at solar minimum by Guhathakurta et al. (1999), and low temperature, as directly measured at the base of this coronal hole by David et al. (1998), the oxygen outflow speed derived spectroscopically is consistent with that implied by the proton flux conservation. The hydrogen outflow is also consistent with flux conservation if the deviation from isotropy of the velocity distribution of the hydrogen atoms is negligible. Hence, for this cool and tenuous corona, the oxygen ions and neutral hydrogen atoms flow outward roughly at the same speed, which increases from 40 km s–1 at 1.5 R to 360 km s–1 at 3.1 R , with an average acceleration of the order of 4.5×103 cm s–2. The highly anisotropic velocity distributions of the Ovi ions found in the analysis confirm that the process which is heating the oxygen ions acts preferentially across the magnetic field.  相似文献   

19.
The analysis of a homogeneous sample of 108 Abell clusters has led to an average peculiar velocity for the center of mass motion of these clusters of 610±750 km s–1. From this result, an upper limit for the average mass of the Abell clusters of (1.6±2.4)×1015 M was obtained under the assumption that the peculiar motion is due to the excess of neighbours with respect to an uniform background. A lower limit of (2.42.9) x 1014 h -10.4 M was derived if one assumes that the peculiar velocity results from the mutual acceleration with the nearest neighbour.  相似文献   

20.
Internal models have been obtained for uniformly rotating synchronous close binary systems using a modified double approximation scheme. We have considered primaries of 10M , 5M , and 2M with mass ratios of 0.0 to 1.0 in steps of 0.1, and some results are given for a 1M primary with a mass ratio of 1.0. A maximum luminosity reduction of 2.3% was found for a 10M primary with a mass ratio of 1.0 and 7.7% for a mass ratio of 0.0. The corresponding values for 5M are 2.0% and 7.0%, and for 2M they are 1.6% and 5.3%, respectively. These values were not found to be sensitive to small changes in composition. The maximum equatorial velocity varies from 399 km s–1 for 2M to 567 km s–1 for 10M when the mass ratio is zero, but these velocities decrease by 200–300 km s–1 if the mass ratio is unity. The effect of gravity darkening on the apparent position of the primary in the theoretical H-R diagram was investigated. It was determined that an unresolved close binary of unit mass ratio can lie up to 0.9 magnitudes (depending on inclination) above the main sequence, whereas if the effects of distortion are ignored this number is at most 0.75 magnitudes. There seems to be some observational support for the larger value. Two models of the secondaries are given and their dimensions are compared with their critical Roche lobes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号