首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1 · 109 to 6 · 109 L·d− 1, the same order of magnitude as the overall riverine input to the lagoon (3 · 109 L·d− 1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem.  相似文献   

2.
The Patos–Mirim Lagoon system along the southern coast of Brazil is linked to the coastal ocean by a narrow mouth and by groundwater transport through a Holocene barrier. Although other groundwater systems are apparently active in this region, the hydraulic head of the lagoon, the largest in South America, drives groundwater transport to the coast. Water levels in wells placed in the barrier respond to changing water level in the lagoon. The wells also provide a measure of the nutrient concentrations of groundwater flowing toward the ocean. Additionally, temporary well points were used to obtain nutrient samples in groundwater on the beach face of the barrier. These samples revealed a subterranean freshwater–seawater mixing zone over a ca. 240 km shoreline. Previously published results of radium isotopic analyses of groundwater and of surface water from cross-shelf transects were used to estimate a water flux of submarine groundwater discharge (SGD) to nearshore surface waters of 8.5 × 107 m3/day. Using this SGD and the nutrient concentrations in different compartments, nutrient fluxes between groundwater and surface water were estimated. Fluxes were computed using both average and median reservoir (i.e. groundwater and surface water) nutrient concentrations. The SGD total dissolved inorganic nitrogen, phosphate and silicate fluxes (2.42, 0.52, 5.92 × 106 mol day− 1, respectively) may represent as much as 55% (total N) to 10% (Si) of the nutrient fluxes to the adjacent shelf environment. Assuming nitrogen limitation, SGD may be capable of supporting a production rate of ca. 3000 g C m2 year− 1in the nearshore surf zone in this region.  相似文献   

3.
During the last 15 years of the 20th century, several researchers carried out extensive sampling of benthic macrofauna communities in the Ria Formosa lagoon. The main objective of this paper is to discern the main communities of benthic fauna of the Ria Formosa and the leading stressors that limit them based on this large data set.The high species richness and high diversity values observed at most of the stations or groups of stations indicate a good ecological status, with the exception of the sewage-impacted areas and the physically stressed areas. It was possible to define three main stressors acting on the Ria Formosa. The most important is the physical stress imposed by the limited water renewal in some areas of the Ria Formosa. The second is the nutrient and organic matter pollution that is limited to the vicinity of the sewage outfall stations and to some locations of the Ria Formosa. This is due to the dual effects of the low residence time of water, but also due to a degradation of water quality in places of relatively restricted water circulation but with high primary production, symptoms of eutrophication. The third stressor is the natural land–ocean gradient, denoting the influence of seawater exchanges and emersion time, attenuated by the high water exchange rates of Ria Formosa.It was possible to differentiate the anthropogenic stress from the natural physical stress through the application of multivariate analysis. However, both structural (species richness and diversity indices) and functional indicators (trophic composition) indicate the same trend – low species richness, low diversity indices, and a community dominated by detritivores species at the locations characterized by high anthropogenic impact or by physical stress. The physically stressed areas were dominated by chironomid larvae and hydrobiid gastropods and the most polluted areas were dominated by oligochaetes, mainly tubificids.  相似文献   

4.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

5.
This paper reports the initial results of a study of groundwater and coastal waters of southern Brazil adjacent to a 240 km barrier spit separating the Patos Lagoon, the largest coastal lagoon in South America, from the South Atlantic Ocean. The objective of this research is to assess the chemical alteration of freshwater and freshwater–seawater mixtures advecting through coastal permeable sands, and the influence of the submarine discharge of these fluids (SGD) on the chemistry of coastal waters. Here we focus on dissolved iron in this system and use radium isotopic tracers to quantify SGD and cross-shelf fluxes. Iron concentrations in groundwaters vary between 0.6 and 180 μM. The influence of the submarine discharge of these fluids into the surf zone produces dissolved Fe concentrations as high as several micromolar in coastal surface waters. The offshore gradient of dissolved Fe, coupled with results for Ra isotopes, is used to quantify the SGD flux of dissolved Fe from this coastline. We estimate the SGD flux to be 2 × 106 mol day− 1 and the cross-shelf flux to be 3.2 × 105 mol day− 1. This latter flux is equal to about 10% of the soluble atmospheric Fe flux to the entire South Atlantic Ocean. We speculate on the importance of this previously unrecognized iron input to regional ocean production and on the potential significance of this source to understanding variations in glacial–interglacial ocean production.  相似文献   

6.
Acoustic telemetry and standard tag-recapture were used to determine the home range and residency of juveniles and sub-adults of Diplodus sargus and Diplodus vulgaris in the Ria Formosa (Portugal) coastal lagoon. Maximum time between recaptures for the standard tag-recapture method was 128 days for D. sargus and 30 days for D. vulgaris. The majority of the fish were recaptured in the vicinity of the tagging location. Fish tagged with acoustic transmitters had a maximum period of time between first and last detections of 62 days for D. sargus and 260 days for D. vulgaris. Minimum convex polygons areas ranged between 148?024 m2 and 525?930 m2 for D. sargus and between 23?786 m2 and 42?134 m2 for D. vulgaris. Both species presented a high residency index between first and last detections. Two D. sargus tagged with acoustic tags were recaptured by fishermen outside the coastal lagoon at distances of 12 km and 90 km from the tagging position, providing evidence that this species leaves the Ria Formosa during the winter time for the adjacent coastal waters. The results of this study reinforce the importance of Ria Formosa as a nursery for D. sargus and D. vulgaris in the south coast of Portugal.  相似文献   

7.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   

8.
The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH4+-flux to the water and Ca-flux toward sediments increased (NH4+-flux: 5000–3000 μmol m−2 d−1 in seawater and 600/250 μmol m−2 d−1 in brackish water; Ca-flux: −40/−76 meq m−2 d−1 at S=37 and −13/−10 meq m−2 d−1 at S=10); however, later NH4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m−2 d−1), increased during the experiment at S=37 (from 30 mmol m−2 d−1 immediately after salinity increase to 60 mmol m−2 d−1 after 17 days).In brackish conditions, NH4+ and Ca2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH4+ production and a first-order reaction for Ca2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH4+.The mass balance for 17 days indicated a higher retention of NH4+ in porewater in the littoral station in seawater conditions (9.5 mmol m−2 at S=37 and 1.6 mmol m−2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m−2 at S=37; 35/23 mmol m−2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (−10/−1 meq m−2 at S=37; 50/90 meq m−2 at S=10) and was linked to a higher efflux of CO2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m−2). These results indicate that increased salinity in shallow coastal waters could play a major role in the global carbon cycle.  相似文献   

9.
Algal blooms in Tolo Harbour, Hong Kong have received much attention and submarine groundwater discharge is speculated to be a significant pathway carrying nutrients into the constricted estuary. Plover Cove, a small cove in the Harbour, was selected for SGD analysis using 222Rn budget. The volumetric SGD rates are estimated to be about 8000 m3/day for neap tide and about 17,000 m3/day for spring tide. Result of nutrient analysis of the porewater indicates that the nutrient loading through this pathway is speculated to be crucial for eutrophication in Tolo Harbour. Current practice for the management of algal blooms in Hong Kong, in which nutrient loading through SGD was ignored, has to be reviewed and the control measures of groundwater contamination are obviously required.  相似文献   

10.
The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L− 1) close to zero salinity and increased several-fold ( 18 mg L− 1; low discharge) toward the seaward endmember, which may be attributed to dynamic resuspension of bottom sediments within Jupiter Inlet.Surface water-column 222Rn activities were most elevated (> 28 dpm L− 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 × 105 m3 d− 1 (20–74 L m− 2 d− 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine groundwater discharge rates yield NH4+ and PO4− 3 flux estimates to the Loxahatchee River estuary that range from 62.7 to 1063.1 and 69.2 to 378.5 μmol m− 2 d− 1, respectively, depending on river stage. SGD-derived nutrient flux rates are compared to yearly computed riverine total N and total P load estimates.  相似文献   

11.
Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02–0.65 m3 m− 2 d− 1at the various sites. Groundwater nutrient fluxes of 0.04–40 mmol N m− 2 d− 1 and 0.01–1.6 mmol P m− 2 d− 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites.  相似文献   

12.
Brackish water ecosystems are often exposed to wide variations in environmental variables, including temperature and salinity, which may cause strong selective pressures on organisms modifying the genetic patterns of species. The aim of this work was to test whether there is a ‘divergence-with-gene flow’ in coastal lagoon populations of white seabream (Diplodus sargus) (Ria Formosa, S Portugal and Mar Menor, SE Spain) respect to four marine populations, by using partial sequences of cyt b mitochondrial gene and information from nine microsatellite loci. Genetic diversity was highest in both coastal lagoons (Mar Menor and Ria Formosa) considering mitochondrial and nuclear markers. Although some of FST population pairwise comparisons were not significant, analyses of molecular variance (AMOVAs) detected differences between groups (coastal lagoon and marine) close to significance. Also, only two haplotypes (Cytb-17 and Cytb-18) were detected in both coastal lagoon sampling sites and these localities (Mar Menor and Ria Formosa) showed the highest number of singletons, some of them with a high number of mutations, as has been already described for other Mar Menor populations (Pomatochistus marmoratus and Holothuria polii). Also, several tests detected significant positive and balancing selection considering mtDNA and microsatellite data. These data support the hypothesis of selection as one of the drivers of the genetic differences found between coastal lagoon and marine populations. The life strategy adopted by Diplodus sargus in coastal lagoons allows it to decrease its mortality rate and improve the heritability of its genes. Also, the increase time spent in coastal lagoons with different temperatures and salinities favours the fitness selection and the maintenance of exclusive haplotypes and genotypes in coastal lagoon inhabitants favouring the ‘divergence-with-gene-flow’.  相似文献   

13.
The dynamics of benthic primary production and community respiration in a shallow oligotrophic, marine lagoon (Fællestrand, Denmark) was followed for 1·5 years. The shape of the annual primary production cycle was explained primarily by seasonal changes in temperature (r2 = 0·67-0·72) and daylength (r2 = 0·63), whereas temperature almost explained all variation in benthic community respiration (r2 = 0·83-0·87). On a daily basis the benthic system was autotrophic during spring and summer supplied by 'new' and 'regenerated' nitrogen and predominantly heterotrophic during fall and winter caused by light and nutrient limitation. The linear depth-relationship between porewater alkalinity and ammonium indicated that the C:N ratio of mineralized organic matter is low in spring and summer (3-6) and high in fall and winter (9-16). This is inversely related to net primary production and thus the input of labile, nitrogen-rich algal cells. Accordingly, mineralization occurred predominantly in the upper 2-5 cm of the sediment. The pool of reactive material (microalgal cells) was estimated to account for 12% of total organic carbon in the upper 3 cm, and had an average turnover time of less than 1 month in summer. Assimilation of organic carbon by benthic animals was equivalent to about 30% of the annual gross primary production. Grazing reduced chlorophyll a concentration in the sediment during summer and spring to values 30-40% lower than in winter, but maintained a 3-4 times higher specific microalgal productivity. The rapid turnover of organic carbon and nitrogen, and important role of benthic microalgae showed that the benthic community in this oligotrophic lagoon is of a very dynamic nature.  相似文献   

14.
Fish communities of the Ria Formosa coastal lagoon (south Portugal) were sampled on a monthly basis with a beach seine at 4 sites, during two different time periods: 1980–1986 and 2001–2002. Community indices, species ranking and multivariate analysis were used in order to identify changes in the fish community between the two time periods. A total of 153,511 fish representing 57 taxa were recorded. Although species composition was very similar for both sampling periods, multivariate analysis performed on annual species abundance in number and weight revealed differences in fish community structure between the two periods. Structural changes in fish community were related mostly to a sharp decrease in the abundance of Mugilidae from 1980–1986 to 2001–2002. These changes were probably associated to a decrease in organic matter contents and nutrients concentrations due to improvements in sewage treatment and better water circulation inside the lagoon. The changes in fish community structure are more evident in the inner areas of the lagoon than near the inlet. The association between changes in sewage patterns and changes in the ichthyofaunal community structure reinforces the importance of fish communities as a biological indicator of human induced changes in marine systems.  相似文献   

15.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

16.
The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158–663 μM) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z. noltii. This impact is spatially restricted to areas up to 600 m distant from the WWTW discharge, probably due to the high water renewal of the lagoon.  相似文献   

17.
We used stable C and N isotope ratios of tissues from 29 fish species from a large subtropical lagoon in southern Brazil to examine spatial variability in isotopic composition and vertical trophic structure across freshwater and estuarine habitats. Nitrogen isotope ratios indicated a smooth gradation in trophic positions among species, with most fishes occupying the secondary and tertiary consumer level. Fish assemblages showed a significant shift in their carbon isotopic signatures between freshwater and estuarine sites. Depleted carbon signatures (from −24.7‰ to −17.8‰) were found in freshwater, whereas more enriched signatures (from −19.1‰ to −12.3‰) were obtained within the estuarine zone downstream. Based on our survey of the C3 and C4 plants and isotopic values for phytoplankton and benthic microalgae reported for ecosystems elsewhere, we hypothesized that the observed δ13C differences in the fish assemblage between freshwater and estuarine sites is due to a shift from assimilating organic matter ultimately derived from C3 freshwater marsh vegetation and phytoplankton at the freshwater site (δ13C ranging from −25‰ to −19‰), to C4 salt-marsh (e.g. Spartina) and widgeon grass (Ruppia maritima), benthic microalgae and marine phytoplankton at the estuarine sites (from −18‰ to −12‰). Our results suggested that fish assemblages are generally supported by autochthonous primary production. Freshwater fishes that likely were displaced downstream into the estuary during periods of high freshwater discharge had depleted δ13C values that were characteristic of the upper lagoon. These results suggest that spatial foodweb subsidies can occur within the lagoon.  相似文献   

18.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

19.
The plant reproductive effort, the seed germination rate and the seedling survival and development of Zostera marina (eelgrass) were assessed in four populations (Fuzeta, Culatra, Barrinha and Armona) at the species’ southern distribution limit in the Eastern Atlantic, the Ria Formosa lagoon. Germinated seeds were individually placed in Petri dishes with natural sandy sediments and kept in a culture chamber at the same temperature and salinity conditions as the natural environment. In addition, seeds from three different depths of Fuzeta population were cultivated in outdoor mesocosms. The populations of Fuzeta and Barrinha showed higher seed production and the seeds produced were heavier than the other populations. The germination of the seeds both in the laboratory and in the outdoor tanks began c. 8–12 weeks after the collection of the flowering shoots at a water temperature of 22 °C. The spontaneous germination in the laboratory (2.4–5.3%) and in the mesocosm experiment (5.6–8.9%) was low and from all the germinated seeds (n = 20) only three reached the seedling stage. The spontaneously germinated seeds from Fuzeta survived for a longer period than those from Barrinha, but only the germinated seeds of Barrinha reached the seedling stage (one‐leaf seedling stage). In outdoor tanks, higher seed germination and earlier seedling emergence (2 weeks after seeding) and survival (for 208 days) occurred for the seeds obtained from the shallow meadow. The reproductive effort of Z. marina populations of Ria Formosa showed that flowering shoots and seed traits are site‐specific. The low reproductive success indicated by the low germination and seedling survival suggests a bottleneck in the species’ reproductive cycle that may account for the scarce presence of the species in Ria Formosa lagoon. The high water temperatures of Ria Formosa in winter may partly explain this bottleneck. Increased temperatures due to climate change may reduce even further the sexual reproduction of Z. marina in its southern distributional limit in the Eastern Atlantic.  相似文献   

20.
There is increasing evidence that submarine groundwater discharge (SGD) in many areas represents a major source of dissolved chemical constituents to the coastal ocean. In Great South Bay, NY, previous studies have shown that the discharge of nutrients with SGD may cause harmful algal blooms. This study estimates SGD to Great South Bay during August 2006 by performing a mass balance for each of the dissolved Ra isotopes (224Ra, 223Ra, 228Ra, 226Ra). The budget indicates a major unknown source (between 30 and 60% of the total input) of Ra to the bay. This imbalance can be resolved by a flux of Ra-enriched groundwater on the order of 3.5–4.5 × 109 L d− 1, depending on the Ra isotope. The Ra-estimated SGD rates compare well with those previously estimated by models of flow that decreases exponentially away from shore. Compared to previous reports of fresh groundwater discharge to the bay, the Ra-estimated discharge must comprise approximately 90% recirculated seawater. The good agreement between Ra- and model-estimated flow rates indicates that the primary SGD endmember may be best sampled at shallow depths in the sediments a short distance bayward of the low tide line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号