首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trace elements were measured in the rims and interiors of nine chondrules separated from the Chainpur LL-3 chondrite. Whole rock samples of Chainpur and samples of separated rims were also measured. Chondrule rims are moderately enriched in siderophile and volatile elements relative to the chondrule interiors. The enriched volatile elements include the lithophilic volatile element Zn. The moderate enrichment of volatiles in chondrule rims and the lack of severe depletion in chondrules can account for the complete volatile inventory in Chainpur. These results support a three-component model of chondrite formation in which metal plus sulfide, chondrules plus rims and matrix silicates are mixed to form chondrites.  相似文献   

2.
Chondrite groups (CV, CK, CR) with large average chondrule sizes have low proportions of RP plus C chondrules, high proportions of enveloping compound chondrules, high proportions of chondrules with (thick) igneous rims, and relatively low proportions of type-I chondrules containing sulfide. In contrast, chondrite groups (CM, CO, OC, R, EH, EL) with smaller average chondrule sizes have the opposite properties. Equilibrated CK chondrites have plagioclase with relatively low Na; equilibrated OC, R, EH and EL chondrites have more sodic plagioclase. Enveloping compound chondrules and chondrules with igneous rims formed during a remelting event after the primary chondrule was incorporated into a dustball. Repeated episodes of remelting after chondrules were surrounded by dust would tend to produce large chondrules. RP and C chondrules formed by complete melting of their precursor assemblages; remelting of RP and C chondrules surrounded by dust would tend to produce porphyritic chondrules as small dust particles mixed with the melt, providing nuclei for crystallizing phenocrysts. This process would tend to diminish the numbers of RP and C chondrules. Correlations among these chondrule physical properties suggest that chondrite groups with large chondrules were typically surrounded by thick dust-rich mantles that formed in locally dusty nebular environments. Chondrules that were surrounded by thick dust mantles tended to cool more slowly because heat could not quickly radiate away. Slow cooling led to enhanced migration of sulfide to chondrule surfaces and more extensive sulfide evaporation. These chondrules also lost Na; the plagioclase that formed from equilibrated CK chondrites was thus depleted in Na.  相似文献   

3.
Matrix material in type 3 chondrites forms rims on chondrules, metal-sulfide aggregates, Ca,Al-rich inclusions and chondritic clasts; it also forms lumps up to a millimeter in size, which may contain coarser silicates. Chondrules of all types were found with internal matrix lumps that appear to have entered the chondrules before the latter had crystallized. Mean concentrations of Mg, Na, Al and Ca in matrix occurrences show up to fivefold variations in a single chondrite. Variations between mean matrix compositions of individual type 3 ordinary chondrites are almost as large and partly reflect systematic differences between H, L and LL matrices. Such variations are probably a result of nebular separation of feldspathic material and ferromagnesian silicates.Compositions of chondrules and their matrix rims are normally unrelated, although rim compositions are correlated with those of matrix lumps inside chondrules. A single chondrule was found with a composition nearly identical to that of its internal matrix lump, suggesting that some chondrules may have formed from matrix material. Matrix lumps are as heterogeneous as chondrules, but mean chondrule and matrix compositions differ, even allowing for possible loss of metallic Fe,Ni during chondrule formation. Since bulk compositions of matrix lumps and rims have probably not changed significantly since their formation except for Fe-Mg exchange, our matrix samples cannot represent typical chondrule precursor materials.  相似文献   

4.
The least equilibrated ordinary chrondrites contain chondrules which have experienced little change since the time of their formation in the early solar system. These chondrules are excellent indicators of the physical and chemical nature of the solar nebula. We separated 36 chondrules from the Chainpur (LL3.4) chondrite and analyzed each for 20 elements and petrographic properties. Sampling biases were minimized as far as possible.Chondrules seem to have formed through the melting of random mixtures of grains comprising a limited number of nebular components. The identity of these components can be deduced from chondrule compositions. The dominant components appear to be: 1) a mixture of metal and sulfide with composition similar to whole-rock metal and sulfide; 2) refractory (Ir-rich) metal; 3) refractory, olivine-rich silicates; 4) low-temperature, pyroxene-rich silicates, and, possibly, 5) a component containing the more volatile lithophiles.Most of the textural types of chondrules formed from the same set of precursor components. In some cases chondrules having different textures are almost identical in composition. A few, unusual chondrule types seem to mainly consist of uncommon nebular components, possibly indicating different modes of formation.Etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules. However, a large fraction of the volatiles remains in the unetched interior.  相似文献   

5.
Sequential non-destructive neutron activation analysis was used to determine the bulk abundance of Fe, Al, Na, Mn, Or, Sc, Co and Ir in approximately 300 individual chondrules from 16 chondrites representing the H (3–5), L4 and LL(3–6) compositional and petrologic classes. For some of the chondrules, Si, Ni, Ca and V were also determined. The histograms indicate that the most probable abundances for lithophilic elements, except Cr, are enriched in the chondrules, while the siderophilic elements are depleted in the chondrules compared to the whole chondrite. Some of the abundance populations, such as Al and Fe, appear to be multimodal. Systematic variations in the composition of the chondrules with increasing petrologic type were observed; most consistent are an increasing Na-Al and Cr-Al correlation, a decreasing Na-Mn correlation, increasing Na abundance and decreasing Na and Mn dispersions among chondrules. The systematic compositional variations with increasing petrologic type are consistent with an increasing approach to equilibrium between chondrules and matrix.Observed elemental correlations are generally consistent with mineralogical controls expected on the basis of geochemical affinities suggested by the mineral assemblages present in the chondrules. However, a prevalent Al-Ir correlation was observed, and is most pronounced for a group of chondrules belonging to a population high in Al. A Sc-Ir correlation was observed. Also, an anti-correlation between chondrule masses and Al (and Ir for some chondrules) content of the chondrules was observed. These correlations are attributed to a fractionation during condensation or chondrule formation and cannot be attributed to classical geochemical similarities i.e. these correlations result from a cosmochemical fractionation. From the compositional evidence, it is suggested that there may be two mechanisms for chondrule production. Some high Al chondrules which exhibit the Al-Ir correlation are believed to be remelted primitive high-temperature aggregates. The elemental composition of the chondrules from the lower Al abundance population is consistent with a preferential remelting of pre-existing silicates.  相似文献   

6.
The compositions of the interiors and abraded surfaces of 7 chondrules from Semarkona (LL3.0) were measured by neutron activation analysis. For nonvolatile elements, the lithophile and siderophile element abundance patterns in the surfaces are generally similar to those in the corresponding interiors. Siderophile and chalcophile concentrations are much higher in the surfaces, whereas lithophile concentrations are similar in both fractions. Most of the similarities in lithophile patterns and some of the similarities in siderophile patterns between surfaces and interiors may reflect incomplete separation of the fractions in the laboratory, but for 3 or 4 chondrules the siderophile resemblance is inherent, implying that the surface and interior metal formed from a single precursor assemblage. Metal and sulfide-rich chondrule rims probably formed when droplets of these phases that migrated to the chondrule surface during melting were reheated and incorporated into matrix-like material that had accreted onto the surface. The moderately-volatile to volatile elements K, As and Zn tend to be enriched in the surfaces compared with other elements of similar mineral affinity; both enrichments and depletions are observed for other moderately volatile elements. A small fraction of chondrules experienced fractional evaporation while they were molten.  相似文献   

7.
Optical and cathodoluminescence petrography were coupled with electron microprobe analysis to relate the textures and chemical compositions of minerals in the chondrules and matrix of the Indarch, Kota-Kota, Adhi-Kot and Abee Type I enstatite chondrites. Clinoenstatites fall into two distinct chemical groups with characteristic red or blue luminescence; red crystals are higher in Ti, Al, Cr, Mn and Ca, and lower in Na, than blue ones. Rare forsterites in Indarch and Kota-Kota show distinct compositions associated with orange or blue luminescence. The chemical ranges are indistinguishable for each color type in chondrules of all textural types, and the presence of both color types in a single chondrule or a metal fragment requires mechanical aggregation of both crystals and liquids of both color types. Porphyritic chondrules are ascribed mainly to aggregation of existing crystals because both types of pyroxene and olivine occur in the same chondrule. Large crystals of one color type are surrounded by fine-grained crystals of another type in some barred and radiating chondrules. All types of chondrules are surrounded by fine-grained rims rich in sulfide. The matrix contains many broken chondrules and individual silicate grains but is rich in sulfide and metal. Analyses are given of albite (minor elements and luminescence color vary between chondrites), kamacite, schreibersite, oldhamite and niningerite.Although the mineral assemblages do not fit theoretical condensation sequences in detail, the red pyroxene and orange olivine might result ultimately from near-equilibrium crystallization in which early reduced condensates reacted with a gas, while the blue crystals might result from fractional condensation in which early condensates were removed mechanically from a gas. Subsequent episodes involving mixing, melting, crystallization, condensation, fracturing, and mechanical aggregation would be needed to produce the complex textures.  相似文献   

8.
不同球粒陨石群的物理和岩石学性质,包括球粒的平均大小、球粒结构类型、复合球粒、带火成边球粒及含硫化物的比例、化学组成及矿物学特征等可用以划分球粒陨石的化学-岩石类型和小行星类型,这些性质提供了不同球粒陨石群有用的分类参数及其形成环境的信息.由于不同球粒陨石群的△17O与日心距离存在有相关关系,因此,依据不同球粒陨石群形...  相似文献   

9.
The behavior of Na and K during evaporation from chondrule composition melts was studied using a vacuum furnace. Though Na is the less volatile of the two as an element, it is lost more rapidly than K from silicate melts. Mass fractionation of K isotopes was measured by ion microprobe and Rayleigh fractionation is observed for vacuum evaporation (10−5 atm). With higher pressures of air, the K loss rate decreases but with increasing hydrogen pressure, K is lost more rapidly. δ41K decreases with higher pressures, because of back reaction between melt and K in the gas. With long heating duration, the release of light K condensed within the furnace leads to interaction with the K-depleted melt and a further reduction of δ41K. Natural chondrules differ in some ways from our experimental residues. Some (especially type IIA) have superchondritic Na and K, despite their assumed formation in nebular hydrogen, which enhances volatile loss, and chondrules do not show K isotopic fractionation. Type I chondrules in Semarkona (LL3.0) either plot on our evaporation trend, or are depleted in K but slightly enriched in Na, relative to K. In Bishunpur (LL3.1), type I chondrules are mostly K-depleted but moderately to strongly enriched in Na. In petrologic type 3.2 to 3.4 chondrites they are enriched in both K and Na, like type II chondrules. The alkali contents suggest type I chondrules experienced evaporation and subsequent metasomatism. Their normal δ41K values suggest closed-system evaporation of a chondritic precursor in a gas with relatively high K pressures due to vaporization of dust accompanying chondrule precursor aggregates. Type II chondrules are volatile-rich, as well as unfractionated in K isotopes. They probably formed in a gas with higher pK than in the case of type I chondrules, due to heating of a more dust-rich parcel of gas.  相似文献   

10.
In the Piancaldoli LL3 chondrite, we found a mm-sized clast containing ~100 chondrules 0.2–64 μm in apparent diameter (much smaller than any previously reported) that are all of the same textural type (radial pyroxene; FS1–17). This clast, like other type 3 chondrites, has a fine-grained Ferich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si- and Cr-bearing metallic Fe,Ni. However, the very high modal matrix abundance (63 ± 8 vol. %), unique characteristics of the chondrules, and absence of microscopically-observable olivine indicate that the clast is a new kind of type 3 chondrite. Most chondrules have FeO-rich edges, and chondrule size is inversely correlated with chondrule-core FeO concentration (the first reported correlation of chondrule size and composition). Chondrules acquired Fe by diffusion from Fe-rich matrix material during mild metamorphism, possibly before final consolidation of the rock. Microchondrules (those chondrules ? 100 μm in diameter) are also abundant in another new kind of type 3 chondrite clast in the Rio Negro L chondrite regolith breccia. In other type 3 chondrite groups, microchondrule abundance appears to be anticorrelated with mean chondrule size, viz. 0.02–0.04 vol. % in H and CO chondrites and ?0.006 vol. % in L, LL, and CV chondrites.Microchondrules probably formed by the same process that formed normal-sized droplet chondrules: melting of pre-existing dustballs. Because most compound chondrules in the clast and other type 3 chondrites formed by collisions between chondrules of the same textural type, we suggest that dust grains were mineralogically sorted in the nebula before aggregating into dustballs. The sizes of compound chondrules and chondrule craters, which resulted from collisions of similarly-sized chondrules while they were plastic, indicate that size-sorting (of dustballs) occurred before chondrule formation, probably by aerodynamic processes in the nebula. We predict that other kinds of type 3 chondrites exist which contain chondrule abundances, size-ranges and proportions of textural types different from known chondrite groups.  相似文献   

11.
We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3ox), Axtell (CV3ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites.After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as the mechanism for producing the chondrite classes. Presolar grains would have been destroyed if the nebula had been completely vaporized. Our analysis shows that carbonaceous chondrites reflect all stages of nebular processing and thus are no more closely related to one another than they are to ordinary and enstatite chondrites.  相似文献   

12.
A chrysotile-like phase, cronstedtite, polygonal serpentine, pentlandite, and finely intergrown tochilinite comprise the fine-grained rim (FGR) mineralogy of the Cold Bokkeveld CM chondrite. Transmission electron microscope images combined with compositional data indicate reaction among cronstedtite, the chrysotile-like phase, and polygonal serpentine. The Mg/(Mg+Fe) ratios of the cronstedtite are higher than those reported for the less altered Murchison CM chondrite. Cronstedtite grains exhibit layer separations, particularly at their boundaries.The FGRs surround different chondrule types but have similar bulk compositions and mineralogy. Ca is depleted in the FGRs relative to the bulk CM chondrite. The FGRs display non-uniform thicknesses, especially where they coat embayed chondrule areas, and they exhibit grain-size coarsening outward from the chondrules they enclose. FGR formation in Cold Bokkeveld is most plausibly explained by multiple accretionary episodes during which progressively coarser dust was deposited onto chondrules, presumably in the solar nebula. The compositional and mineralogic data are consistent with aqueous alteration on the parent body.  相似文献   

13.
The mineralogy and bulk compositions of the matrices of the CR chondrites MET 00426 and QUE 99177 have been studied using a combination of SEM, EPMA, and TEM techniques. The matrices of these two chondrites are texturally, chemically, and mineralogically similar and are characterized by significant FeO-enrichments with respect to other CR chondrite matrices, nearly flat refractory lithophile patterns, variable volatile element patterns, and a simple mineral assemblage dominated by amorphous silicate material and Fe,Ni sulfides. Fine-grained, crystalline silicate phases such as olivine and pyroxene appear to be extremely rare in the matrices of both meteorites. Instead, the mineralogy of matrices and fine-grained rims of both meteorites consists of abundant amorphous FeO-rich silicate material, containing nanoparticles of Fe,Ni sulfides (troilite, pyrrhotite, and pentlandite). Secondary alteration minerals that are characteristic of other CR chondrites (e.g., Renazzo and Al Rais), such as phyllosilicates, magnetite, and calcite are also rare. The texture and mineralogy of the matrices of MET 00426 and QUE 99177 share many features with matrices in the primitive carbonaceous chondrites ALH A77307 (CO3.0) and Acfer 094 (unique). These observations show that MET 00426 and QUE 99177 are very low petrologic type 3 chondrites that have escaped the effects of aqueous alteration, unlike other CR chondrites, which are typically classified as petrologic type 2. We suggest that these meteorites represent additional samples of highly primitive, but extremely rare carbonaceous chondrites of petrologic type 3.00, according to the classification scheme of Grossman and Brearley (2005). The highly pristine nature of MET 00426 and QUE 99177 provides important additional insights into the origins of fine-grained materials in carbonaceous chondrites. Based on our new observations, we infer that the amorphous silicate material and nanosulfide particles that dominate the matrices of these meteorites formed in the solar nebula by rapid condensation of material following high-temperature events, such as those that formed chondrules.  相似文献   

14.
We report high precision sulfur isotopic data obtained by sequential extraction from various physically separated phases (bulk, matrix, and chondrules) from chondrites. A significant excess of 33S (up to Δ33S of 0.112‰ for Dhajala Chondrule) has been observed and is most likely carried by chondrule rims, though chondrule interiors cannot be ruled out as a carrier. Stellar nucleosynthesis and spallation are ruled out as a cause for this anomaly. Photochemical irradiation of sulfur gaseous species in the early solar nebula has, most likely, produced this anomaly. Observations of mass independent sulfur of photochemical origin suggest that chondrules and their rims must have formed in an optically thin nebular region. This also suggests that the chondrules were formed near the protoSun when it was active in ultraviolet light emission.  相似文献   

15.
A petrographic and electron microscopic study of the Mokoia CV3 carbonaceous chondrite shows that all of the chondrules and inclusions (>400 μm in diameter) and most of their fine-grained rims studied (referred to as chondrules/rims) contain various amounts of hydrous phyllosilicates (mostly saponite) formed by aqueous alteration of anhydrous silicates. The rims mainly consist of fine-grained olivine and saponite in varying proportions and contain crosscutting veins of Fe-rich olivine. The boundaries between the chondrules and their rims are irregular and show abundant evidence of aqueous alteration interactions between them. In contrast, the host matrix contains very minor amounts of saponite and shows no evidence of such extensive aqueous alteration. The boundaries between the chondrules/rims and the matrix are sharp and show no traces of the matrix having been involved in the alteration of the chondrules/rims. These observations indicate that the aqueous alteration in the chondrules/rims did not occur in the present setting.We suggest that the chondrules/rims are actually clasts transported from a location on the meteorite parent body different from where the Mokoia meteorite was from. The aqueous alteration of the chondrules/rims probably occurred there. The veins in the rims were originally fractures produced in an interchondrule matrix by impacts; these were later filled by Fe-rich olivine during aqueous activity. This location was then involved in impact brecciation, and individual chondrules were ejected as clasts with remnants of the matrix surrounding them. During the continuing brecciation, those chondrule/rim clasts were transported, mixed with anhydrous matrix grains, and finally lithified to the present meteorite. Therefore, the rims are fragmented remnants of a former matrix.Textures characterized by fine-grained rims surrounding chondrules in chondrites have been widely thought to have formed in the solar nebula before they accreted into their parent bodies. However, our results suggest that some textures may not be explained by such an accretionary model; instead, the multi-stage parent-body process modeled for the Mokoia rim formation may be a more plausible explanation.  相似文献   

16.
Fourteen siderophile and other non-lithophile elements determined in 31 Semarkona (LL3.0) chondrules by neutron activation analysis are severely fractionated relative to lithophile elements. Their chondrule/whole-rock abundance ratios vary by factors of up to 1000; the mean ratio is ~0.2. Non-refractory siderophile abundance patterns in Ni-rich chondrules are smooth functions of volatility and in Ni-poor chondrules patterns are more irregular. Refractory siderophile elements are often fractionated from Ni; they covary, confirming the presence of a refractory metal component. The chalcophile element Se correlates with Br and siderophile elements. Zinc is uniformly low and uncorrelated with other elements.Most metal and sulfide in chondrules was probably present in the solar nebula before chondrule formation; most siderophile and chalcophile elements were in these materials. Some Fe was also in silicates, as were minor amounts of Ni, Co, Au, Ge and possibly Se. The amount of metal formed by reduction during chondrule melting was minor. The common metal component in chondrules is similar to, and may be the same as the common component involved in the metal/silicate fractionation of the ordinary chondrite groups.Chondrules are depleted in metal chiefly because they sampled metal-poor precursor assemblages. Metal segregation during the molten period and subsequent loss was a minor process that may be responsible for most surface craters on chondrules.  相似文献   

17.
We have investigated the Na distributions in Semarkona Type II chondrules by electron microprobe, analyzing olivine and melt inclusions in it, mesostasis and bulk chondrule, to see whether they indicate interactions with an ambient gas during chondrule formation. Sodium concentrations of bulk chondrule liquids, melt inclusions and mesostases can be explained to a first approximation by fractional crystallization of olivine ± pyroxene. The most primitive olivine cores in each chondrule are mostly between Fa8 and Fa13, with 0.0022–0.0069 ± 0.0013 wt.% Na2O. Type IIA chondrule olivines have consistently higher Na contents than olivines in Type IIAB chondrules. We used the dependence of olivine–liquid Na partitioning on FeO in olivine as a measure of equilibration. Extreme olivine rim compositions are ~Fa35 and 0.03 wt.% Na2O and are close to being in equilibrium with the mesostasis glass. Olivine cores compared with the bulk chondrule compositions, particularly in IIA chondrules, show very high apparent DNa, indicating disequilibrium and suggesting that chondrule initial melts were more Na-rich than present chondrule bulk compositions. The apparent DNa values correlate with the Na concentrations of the olivine, but not with concentrations in the bulk melt. We use equilibrium DNa to find the Na content of the true parent liquid and estimate that Type IIA chondrules lost more than half their Na and recondensation was incomplete, whereas Type IIAB chondrules recovered most of theirs in their mesostases.Glass inclusions in olivine have lower Na than expected from fractionation of bulk composition liquids, and mesostases have higher Na than expected in calculated daughter liquids formed by fractional crystallization alone. These observations also require open system behavior of chondrules, specifically evaporation of Na before formation of melt inclusions followed by recondensation of Na in mesostases. Within this record of evaporation followed by recondensation, there is no indication of a stage with zero Na in the chondrules, which is predicted by models for shock wave cooling at canonical nebular pressures, suggesting high PT.The high Na concentrations in olivine and mesostases indicate very high PNa while chondrules were molten. This may be explained by local, very high particle densities where Type II chondrules formed. The high PT, PNa and number densities of chondrules implied suggest formation in debris clouds after protoplanetary collisions as an alternative to formation after passage of shock waves through large particle-rich clumps in the disk. Encounters of partially molten chondrules should have been frequent in these dense swarms. However, in many ordinary chondrites like Semarkona, “cluster chondrites”, compound chondrules are not abundant but instead chondrules aggregated into clusters. Chondrule melting, cooling and clustering in dense swarms contributed to rapid accretion, possibly after collision, by fallback on the grandparent body and by reaccretion as a new body downrange.  相似文献   

18.
Relatively coarse-grained rims occur around all types of chondrules in type 3 carbonaceous and ordinary chondrites. Those in H-L-LL3 chondrites are composed primarily of olivine and low-Ca pyroxene; those in CV3 chondrites contain much less low-Ca pyroxene. Average grain sizes range from ~4 μm in H-L-LL3 chondrites to ~10 μm in CV3 chondrites. Such rims surround ~50%, ~10% and ≤ 1% of chondrules in CV3, H-L-LL3 and CO3 chondrites, respectively, but are rare (≤1%) around CV3 Ca,Al-rich inclusions. Rim thicknesses average ~150 μm in H-L-LL3 chondrites and ~400 μm in CV3 chondrites.The rims in H-L-LL3 chondrites are composed of material very similar to that which comprises darkzoned chondrules and recrysiallized matrix. Dark-zoned chondrules and coarse-grained rims probably formed in the solar nebula from clumps of opaque matrix material heated to sub-solidus to sub-liquidus temperatures during chondrule formation. Mechanisms capable of completely melting some material while only sintering other material require steep thermal gradients; suitable processes are lightning, reconnecting magnetic field lines and, possibly, aerodynamic drag heating.CV chondrites may have formed in a region where the chondrule formation mechanism was less efficient, probably at greater solar distances than the ordinary chondrites. The lesser efficiency of heating could be responsible for the greater abundance of coarse-grained rims around CV chondrules. Alternatively, CV chondrules may have suffered fewer particle collisions prior to agglomeration.  相似文献   

19.
We report bulk chemical compositions and physical properties for a suite of 94 objects, mostly chondrules, separated from the Mokoia CV3ox carbonaceous chondrite. We also describe mineralogical and petrologic information for a selected subset of the same suite of chondrules. The data are used to examine the range of chondrule bulk compositions, and to investigate the relationships between chondrule mineralogy, texture and bulk compositions, as well as oxygen isotopic properties that we reported previously. Most of the chondrules show minimal metamorphism, corresponding to petrologic subtype <3.2. In general, elemental fractionations observed in chondrule bulk compositions are reflected in the compositions of constituent minerals. For chondrules, mean bulk compositions and compositional ranges are very similar for large (>2 mg) and small (<2 mg) size fractions. Two of the objects studied are described as matrix-rich clasts. These have similar bulk compositions to the chondrule mean, and are potential chondrule precursors. One of these clasts has a similar bulk oxygen isotopic composition to Mokoia chondrules, but the other has an anomalously high value of Δ17O (+3.60‰).Chondrules are diverse in bulk chemical composition, with factor of 10 variations in most major element abundances that cannot be attributed to secondary processes. The chondrules examined show evidence for extensive secondary oxidation, and possible sulfidization, as expected for an oxidized CV chondrite, but minimal aqueous alteration. Some of the bulk chondrule compositional variation might be the result of chemical (e.g. volatilization or condensation) or physical (e.g. metal loss) processes during chondrule formation. However, we suggest that it is mainly the result of significant variations in the assembly of particles that constituted chondrule precursors. Precursor material likely included a refractory component, possibly inherited from disaggregated CAIs, an FeO-poor ferromagnesian component such as olivine or pyroxene, an oxidized ferromagnesian component, and a metal component. Bulk oxygen isotope ratios of chondrules can be explained if refractory and ferromagnesian precursor materials initially shared similar oxygen isotopic compositions of δ17O, δ18O around −50‰, and then significant exchange occurred between the chondrule and surrounding 16O-poor gas during melting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号