首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估   总被引:1,自引:0,他引:1  
空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法。本文根据改进的Suzuki(1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序。通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性。根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图。本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据。  相似文献   

2.
Reliable forecasting of the next eruption at Vesuvius is the main scientific factor in defining effective strategies to reduce volcanic risk in one of the most dangerous volcanic areas of the world. In this paper, we apply a recently developed probabilistic code for eruption forecasting to new and independent historical data related to the pre-eruptive phase of the 1631 eruption. The results obtained point out three main issues: (1) the importance of “cold” historical data (according to Guidoboni 2008) related to pre-eruptive phases for evaluating forecasting tools and possibly refining them; (2) the BET_EF code implemented for Vesuvius would have forecasted the 1631 eruption satisfactorily, marking different stages of the pre-eruptive phase; (3) the code shows that pre-eruptive signals that significantly increase the probability of eruption were likely detected more than 2 months before the event.  相似文献   

3.
Disasters from explosive volcanic eruptions are infrequent and experience in emergency planning and mitigation for such events remains limited. The need for urgently developing more robust methods for risk assessment and decision making in volcanic crises has become increasingly apparent as world populations continue to expand in areas of active explosive volcanism. Nowhere is this more challenging than at Vesuvius, Italy, with hundreds of thousands of people living on the flanks of one of the most dangerous volcanoes in the world. We describe how a new paradigm, evidence-based volcanology, has been applied in EXPLORIS to contribute to crisis planning and management for when the volcano enters its next state of unrest, as well as in long-term land-use planning. The analytical approach we adopted enumerates and quantifies all the processes and effects of the eruptive hazards of the volcano known to influence risk, a scientific challenge that combines field data on the vulnerability of the built environment and humans in past volcanic disasters with theoretical research on the state of the volcano, and including evidence from the field on previous eruptions as well as numerical simulation modelling of eruptive processes. Formal probabilistic reasoning under uncertainty and a decision analysis approach have provided the basis for the development of an event tree for a future range of eruption types with probability paths and hypothetical casualty outcomes for risk assessment. The most likely future eruption scenarios for emergency planning were derived from the event tree and elaborated upon from the geological and historical record. Modelling the impacts in these scenarios and quantifying the consequences for the circumvesuvian area provide realistic assessments for disaster planning and for showing the potential risk–benefit of mitigation measures, the main one being timely evacuation, but include for consideration protecting buildings against dilute, low dynamic pressure surges, and temporary roof supports in the most vulnerable buildings, as well as hardening infrastructure and lifelines. This innovative work suggests that risk-based methods could have an important role in crisis management at cities on volcanoes and small volcanic islands.  相似文献   

4.
长白山天池火山减灾对策初探   总被引:7,自引:0,他引:7  
国内外专家学者认为,长白山天池火山是一座具潜在灾害性喷发危险的活火山,因此制定火山减灾对策理应提到议事日程。针对天池火山研究现状和火山灾害特点,制定了火山活动各阶段的减灾对策。中长期阶段应加强火山监测与研究和火山知识宣传工作,采取必要的工程防护措施,重大工程进行火山安全性评价,制定火山喷发应急预案;短期阶段请求国际火山流动监测台网给予支援;临近喷发阶段重点是有组织的撤离;喷发及其后阶段应及时救灾抢险,对火山喷发趋势进行科学判定,合理地重建家园。  相似文献   

5.
国外火山减灾研究进展   总被引:4,自引:1,他引:3  
徐光宇  皇甫岗 《地震研究》1998,21(4):397-405
概述了国外近期火山灾害减轻进展,内容包括:火山灾害分类,识别高危险性火山,灾害识别、评价和分带,火山监测和喷发预测。减轻火山灾害的工程措施以有火山应急管理等方面。并对几次重大火山喷发灾难实例作了介绍和分析比较  相似文献   

6.
In volcanic risk assessment it is necessary to determine the appropriate level of sophistication for a given predictive model within the contexts of multiple sources of uncertainty and coupling between models. A component of volcanic risk assessment for the proposed radioactive waste repository at Yucca Mountain (Nevada, USA) involves prediction of dispersal of contaminated tephra during violent Strombolian eruptions and the subsequent transport of that tephra toward a hypothetical individual via surface processes. We test the suitability of a simplified model for volcanic plume transport and fallout tephra deposition (ASHPLUME) coupled to a surface sediment-transport model (FAR) that calculates the redistribution of tephra, and in light of inherent uncertainties in the system. The study focuses on two simplifying assumptions in the ASHPLUME model: 1) constant eruptive column height and 2) constant wind speed and direction during an eruption. Variations in tephra dispersal resulting from unsteady column height and wind conditions produced variations up to a factor of two in the concentration of tephra in sediment transported to the control population. However, the effects of watershed geometry and terrain, which control local remobilization of tephra, overprint sensitivities to eruption parameters. Because the combination of models used here shows limited sensitivity to the actual details of ash fall, a simple fall model suffices to estimate tephra mass delivered to the hypothetical individual.  相似文献   

7.
This paper examines the relationship between volcanic risk and the tourism sector in southern Iceland and the complex challenge emergency management officials face in developing effective volcanic risk mitigation strategies. An early warning system and emergency response procedures were developed for communities surrounding Katla, the volcano underlying the Mýrdalsjökull ice cap. However, prior to and during the 2007 tourist season these mitigation efforts were not effectively communicated to stakeholders located in the tourist destination of Þórsmörk despite its location within the hazard zone of Katla. The hazard zone represents the potential extent of a catastrophic jökulhlaup (glacial outburst flood). Furthermore, volcanic risk mitigation efforts in Þórsmörk were based solely on information derived from physical investigations of volcanic hazards. They did not consider the human dimension of risk. In order to address this gap and provide support to current risk mitigation efforts, questionnaire surveys were used to investigate tourists' and tourism employees' hazard knowledge, risk perception, adoption of personal preparedness measures, predicted behaviour if faced with a Katla eruption and views on education.Results indicate that tourists lack hazard knowledge and they do not adopt preparedness measures to deal with the consequences of an eruption. Despite a high level of risk perception, tourism employees lack knowledge about the early warning system and emergency response procedures. Results show that tourists are positive about receiving information concerning Katla and its hazards and therefore, the reticence of tourism employees with respect to disseminating hazard information is unjustified.In order to improve the tourism sector's collective capacity to positively respond during a future eruption, recommendations are made to ensure adequate dissemination of hazard, risk and emergency response information. Most importantly education campaigns should focus on: (a) increasing tourists' knowledge of Katla, jökulhlaup and other volcanic hazards and (b) increasing tourist and employee awareness of the early warning and information system and appropriate behavioural response if a warning is issued. Further, tourism employees should be required to participate in emergency training and evacuation exercises annually. These efforts are timely given that Katla is expected to erupt in the near future and international tourism is an expanding industry in Þórsmörk.  相似文献   

8.
9.
The main goals of this article are to analyze the use of simplified deterministic nonlinear static procedures for assessing the seismic response of buildings and to evaluate the influence that the uncertainties in the mechanical properties of the materials and in the features of the seismic actions have in the uncertainties of the structural response. A reinforced concrete building is used as a guiding case study. In the calculation of the expected spectral displacement, deterministic nonlinear static methods are simple and straightforward. For not severe earthquakes these approaches lead to somewhat conservative but adequate results when compared to more sophisticated procedures involving nonlinear dynamic analyses. Concerning the probabilistic assessment, the strength properties of the materials, concrete and steel, and the seismic action are considered as random variables. The Monte Carlo method is then used to analyze the structural response of the building. The obtained results show that significant uncertainties are expected; uncertainties in the structural response increase with the severity of the seismic actions. The major influence in the randomness of the structural response comes from the randomness of the seismic action. A useful example for selected earthquake scenarios is used to illustrate the applicability of the probabilistic approach for assessing expected damage and risk. An important conclusion of this work is the need of broaching the fragility of the buildings and expected damage assessment issues from a probabilistic perspective.  相似文献   

10.
Taveuni, a 437-km2 oceanic intraplate volcano in the northeastern Fiji Group, has been active throughout the Holocene and currently has a rapidly growing population. Alkali basalt magmas were erupted through monogenetic vents at constantly shifting locations along a SW-striking rift zone. Hence, quantification of volcanic hazard, in both spatial and temporal terms, is of great importance for disaster management and development agencies. Unlike previous probabilistic assessments of hazards in volcanic fields, the activity on Taveuni is both more recent and on a lesser spatial scale. This enables us to focus our attention on different aspects of the analysis. In particular, we propose a first attempt at dealing with the imprecision and inaccuracy inherent in volcanic eruption age data obtained via radiocarbon dating. Our results indicate that volcanic activity on Taveuni has a tendency to occur in episodes. If this tendency is strong, the present hazard may be considerably greater than otherwise supposed. We also confirm an apparent tendency for the volcanic activity to migrate southwards along the Taveuni rift axis towards the most densely settled area, and also the widest axial vent zone. This indicates that the risk from volcanic activity is again higher than might otherwise be supposed. We estimate a Taveuni-wide probability of0.56 for renewed activity within the next 50 years. Such quantitative results can be utilised within loss estimations during the planning stages of new infrastructure and business developments at various locations on the island.  相似文献   

11.
The Auckland Volcanic Field (AVF) is a young basaltic field that lies beneath the urban area of Auckland, New Zealand’s largest city. Over the past 250,000 years the AVF has produced at least 49 basaltic centers; the last eruption was only 600 years ago. In recognition of the high risk associated with a possible future eruption in Auckland, the New Zealand government ran Exercise Ruaumoko in March 2008, a test of New Zealand’s nation-wide preparedness for responding to a major disaster resulting from a volcanic eruption in Auckland City. The exercise scenario was developed in secret, and covered the period of precursory activity up until the eruption. During Exercise Ruaumoko we adapted a recently developed statistical code for eruption forecasting, namely BET_EF (Bayesian Event Tree for Eruption Forecasting), to independently track the unrest evolution and to forecast the most likely onset time, location and style of the initial phase of the simulated eruption. The code was set up before the start of the exercise by entering reliable information on the past history of the AVF as well as the monitoring signals expected in the event of magmatic unrest and an impending eruption. The average probabilities calculated by BET_EF during Exercise Ruaumoko corresponded well to the probabilities subjectively (and independently) estimated by the advising scientists (differences of few percentage units), and provided a sound forecast of the timing (before the event, the eruption probability reached 90%) and location of the eruption. This application of BET_EF to a volcanic field that has experienced no historical activity and for which otherwise limited prior information is available shows its versatility and potential usefulness as a tool to aid decision-making for a wide range of volcano types. Our near real-time application of BET_EF during Exercise Ruaumoko highlighted its potential to clarify and possibly optimize decision-making procedures in a future AVF eruption crisis, and as a rational starting point for discussions in a scientific advisory group. It also stimulated valuable scientific discussion around how a future AVF eruption might progress, and highlighted areas of future volcanological research that would reduce epistemic uncertainties through the development of better input models.  相似文献   

12.
Volcanic ash fallout represents a serious threat to people living near active volcanoes because it can produce several undesirable effects such as collapse of roofs by ash loading, respiratory sickness, air traffic disruption, or damage to agriculture. The assessment of such volcanic risk is therefore an issue of vital importance for public safety and its mitigation often requires to evaluate the temporal evolution of the phenomenon through reliable computational models.We develop an Eulerian model, named FALL3D, for the transport and deposition of volcanic ashes. The model is based on the advection–diffusion–sedimentation equation with a turbulent diffusion given by the gradient transport theory, a wind field obtained from a meteorological limited area model (LAM) and the source term derived from by buoyant plume theory. It can be used to forecast either ash concentration in the atmosphere or ash loading on the ground. Model inputs are topography, meteorological data given by a LAM, mass eruption rate, and a particle settling velocity distribution. A test application to the July 2001 Etna eruption is presented.  相似文献   

13.
In the new types of industrial activities including unconventional energy extraction associated with shale gas and hot dry rock, gas reservoir operations, CO2 geological storage, undergoing research on induced earthquake forecasting has become one of the forward positions of current seismology. As for the intense actual demand, the immature research on induced earthquake forecasting has already been applied in pre-assessment of site safety and seismic hazard and risk management. This work will review systematically recent advances in earthquake forecasting induced by hydraulic fracturing during industrial production from four aspects: earthquake occurrence probability, maximum expected magnitude forecasting, seismic risk analysis for engineering and social applications and key scientific problems. In terms of earthquake occurrence probability, we introduce statistical forecasting models such as an improved ETAS and non-stationary ETAS and physical forecasting models such as Seismogenic Index (SI) and hydro-mechanism nucleation. Research on maximum expected magnitude forecasting has experienced four stages of linear relationship with net injection volume of fluid, power exponential relationship and physical forecasting regarding fault parameters. For seismic risk analysis, we focus on probabilistic seismic hazard assessment and quantitative geological susceptibility model. Furthermore, this review is extended to key scientific problems that contain obtaining accurate fault scale and environmental stress state of reservoir, critical physical process of runaway rupture, complex mechanism of fault activation as well as physical mechanism and modeling of trailing effect. This work in understanding induced earthquake forecasting may contribute to unconventional energy development and production, seismic hazard mitigation, emergency management and scientific research as a reference.  相似文献   

14.
15.
A modal-based analysis of the dynamic response variability of multiple degree-of-freedom linear structures with uncertain parameters subjected to either deterministic or stochastic excitations is considered. A probabilistic methodology is presented in which random variables with specified probability distributions are used to quantify the parameter uncertainties. The uncertainty in the response due to uncertainties in the structural modelling and loading is quantified by various probabilistic measures such as mean, variance and coefficient of excess. The computation of these probabilistic measures is addressed. A series expansion involving orthogonal polynomials in terms of the system parameters is first used to model the response variability of each contributing mode. Linear equations for the coefficients of each series expansion are derived using the weighted residual method. Mode superposition is then used to derive analytical expressions for the variability and statistics of the uncertain response in terms of the coefficients of the series expansions for all contributing modes. A primary–secondary system and a ten-story building subjected to deterministic and stochastic loads are used to demonstrate the methodology, as well as evaluate its performance by comparing it to existing methods, including the computationally cost-efficient perturbation method.  相似文献   

16.
Multi-criteria decision making under uncertainty for flood mitigation   总被引:1,自引:1,他引:0  
Designs of flood mitigation infrastructural systems are decision-making which are often made under various uncertainties involving multiple criteria. Under the condition of uncertainties, any chosen design alternative has the likelihood to perform inferior to other unselected designs in terms of the adopted performance indicators. This paper introduces a quantitative risk measure based on the concept of expected opportunity loss (EOL) for evaluating the consequence of making the wrong decision. The EOL can be used to assess the relative performance of multiple decision alternatives and is extended to deal with decision problems involving multiple criteria. In particular, the probabilistic features of the consequences associated with a design alternative is considered and used in the Preference Ranking Organization Method of Enrichment Evaluation (PROMETHEE) MCDM technique. The integration of PROMETHEE and decision making under uncertainty is demonstrated through an example of flood damage mitigation planning.  相似文献   

17.
《国际泥沙研究》2022,37(6):766-779
Sediment forecasting at a dam site is important for the operation and management of water and sediment in a reservoir. However, the forecast results generally have some uncertainties, which may hinder the operation of the dam. In this study, a real-time sediment concentration probabilistic forecasting model is proposed based on a dynamic network model. Under this framework, the Elman neural network (ENN) and nonlinear auto-regressive with exogenous inputs (NARX) neural network models were established for sediment concentration forecasting with different lead times. A hybrid algorithm, which combined the Levenberg–Marquardt algorithm and real-time recurrent learning, was used to train the model. Using the aforementioned method, the sediment concentration was forecast for at the Sanmenxia Dam, China, and, subsequently, the forecast results were evaluated. Among the selected lead time, the results at 5 h exhibited the highest accuracy and practical significance. Compared with the ENN model, the sediment concentration peak error using the NARX neural network was reduced by 4.5%, and the sediment yield error was reduced by 0.043%. Therefore, the NARX neural network was selected as the deterministic sediment forecasting model. Additionally, the probability density function of the sediment concentration was derived based on the heterogeneity of the error distribution, and the sediment concentration interval, with different confidence levels, expected values, and median values, was forecast. The Nash–Sutcliffe coefficient of efficiency for the sediment concentration, as forecasted based on the median value, was the highest (0.04 higher than that using a deterministic model), whereas the error of the sediment concentration peak and sediment yield remained unaltered. These results indicated the accuracy and superiority of the proposed real-time sediment probabilistic forecasting hybrid model.  相似文献   

18.
Principal and subsidiary building structure characteristics and their distribution have been inventoried in Icod, Tenerife (Canary Islands) and used to evaluate the vulnerability of individual buildings to three volcanic hazards: tephra fallout, volcanogenic earthquakes and pyroclastic flows. The procedures described in this paper represent a methodological framework for a comprehensive survey of all the buildings at risk in the area around the Teide volcano in Tenerife. Such a methodology would need to be implemented for the completion of a comprehensive risk assessment for the populations under threat of explosive eruptions in this area. The information presented in the paper is a sample of the necessary data required for the impact estimation and risk assessment exercises that would need to be carried out by emergency managers, local authorities and those responsible for recovery and repair in the event of a volcanic eruption. The data shows there are micro variations in building stock characteristics that would influence the likely impact of an eruption in the area. As an example of the use of this methodology for vulnerability assessment, we have applied a deterministic simulation model of a volcanic eruption from Teide volcano and its associated ash fallout which, when combined with the vulnerability data collected, allows us to obtain the vulnerability map of the studied area. This map is obtained by performing spatial analysis with a Geographical Information System (GIS). This vulnerability analysis is included in the framework of an automatic information system specifically developed for hazard assessment and risk management on Tenerife, but which can be also applied to other volcanic areas. The work presented is part of the EU-funded EXPLORIS project (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047).  相似文献   

19.
A new seismic hazard model for Cairo, the capital city of Egypt is developed herein based on comprehensive consideration of uncertainties in various components of the probabilistic seismic hazard analysis. The proposed seismic hazard model is developed from an updated catalogue of historical and instrumental seismicity, geodetic strain rates derived from GPS-based velocity-field of the crust, and the geologic slip rates of active faults. The seismic source model consists of area sources and active faults characterised to forecast the seismic productivity in the region. Ground motion prediction models are selected to describe the expected ground motion at the sites of interest. The model accounts for inherent epistemic uncertainties of statistical earthquake recurrence; maximum magnitude; ground motion prediction models, and their propagation toward the obtained results. The proposed model is applied to a site-specific hazard analysis for Kottamiya, Rehab City and Zahraa-Madinat-Nasr (hereinafter referred to as Zahraa) to the East of Cairo (Egypt). The site-specific analysis accounts for the site response, through the parameterization of the sites in terms of average 30-m shear-wave velocity (Vs30). The present seismic hazard model can be considered as a reference model for earthquake risk mitigation and proper resilience planning.  相似文献   

20.
Regional ash fall hazard I: a probabilistic assessment methodology   总被引:1,自引:0,他引:1  
Volcanic ash is one of the farthest-reaching volcanic hazards and ash produced by large magnitude explosive eruptions has the potential to affect communities over thousands of kilometres. Quantifying the hazard from ash fall is problematic, in part because of data limitations that make eruption characteristics uncertain but also because, given an eruption, the distribution of ash is then controlled by time and altitude-varying wind conditions. Any one location may potentially be affected by ash falls from one, or a number of, volcanoes so that volcano-specific studies may not fully capture the ash fall hazard for communities in volcanically active areas. In an attempt to deal with these uncertainties, this paper outlines a probabilistic framework for assessing ash fall hazard on a regional scale. The methodology employs stochastic simulation techniques and is based upon generic principles that could be applied to any area, but is here applied to the Asia-Pacific region. Average recurrence intervals for eruptions greater than or equal to Volcanic Explosivity Index 4 were established for 190 volcanoes in the region, based upon the eruption history of each volcano and, where data were lacking, the averaged eruptive behaviour of global analogous volcanoes. Eruption histories are drawn from the Smithsonian Institution’s Global Volcanism Program catalogue of Holocene events and unpublished data, with global analogues taken from volcanoes of the same type category: Caldera, Large Cone, Shield, Lava dome or Small Cone. Simulated are 190,000 plausible eruption scenarios, with ash dispersal for each determined using an advection–diffusion model and local wind conditions. Key uncertainties are described by probability distributions. Modelled results include the annual probability of exceeding given ash thicknesses, summed over all eruption scenarios and volcanoes. A companion paper describes the results obtained for the Asia-Pacific region  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号