首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

2.
The geochemical and U-series isotopic characteristics of hydrothermal sulfide samples from the Jade site (127°04.5′E, 27°15′N, water depth 1300–1450 m) at Jade site in the Okinawa Trough were analyzed. In the hydrothermal sulfide samples bearing sulfate (samples HOK1 and HOK2), the LREEs are relatively enriched. All the hydrothermal sulfide samples except HOK1 belong to Zn-rich hydrothermal sulfide. In comparison with Zn-rich hydrothermal sulfides from other fields, the contents of Zn, Pb, Ag, Cd, Au and Hg are higher, the contents of Fe, Al, Cr, Co, Ni, Sr, Te, Cs, Ti and U lower, and the 210Pb radioactivity ratios and 210Pb/Pb ratios very low. In the hydrothermal sulfide mainly composed of sphalerite, the correlations between rare elements Hf and U, and Hf and Mn as well as that between dispersive elements Ga and Zn, are strongly positive; also the contents of Au and Ag are related to Fe-sulfide, because the low temperature promotes enrichment of Au and Ag. Meanwhile, the positive correlations between Fe and Bi and between Zn and Cd are not affected by the change of mineral assemblage. Based on the 210Pb/Pb ratios of hydrothermal sulfide samples (3.99×10−5-5.42×10−5), their U isotopic composition (238U content 1.15–2.53 ppm, 238U activity 1.07–1.87 dpm/g, 234U activity 1.15–2.09 dpm/g and 234U/238U ratio 1.07–1.14) and their 232Th and 230Th contents are at base level, and the chronological age of hydrothermal sulfide at Jade site in the Okinawa Trough is between 200 and 2000 yr. Supported by the Pilot Project of Knowledge Innovation Project, Chinese Academy of Sciences (Grant No. KZCX2-YW-211), National Natural Science Foundation of China (Grant Nos. 40830849, 40176020), and Special Foundation for the Eleventh Five Plan of COMRA (Grant No. DYXM-115-02-1-03)  相似文献   

3.
We present a new LA–ICP–MS system for zircon fission‐track (FT) and U–Pb double dating, whereby a femtosecond laser combined with galvanometric optics simultaneously ablates multiple spots to measure average surface U contents. The U contents of zircon measured by LA–ICP–MS and standardized with the NIST SRM610 glass are comparable to those measured by the induced FT method, and have smaller analytical errors. LA–ICP–MS FT dating of seven zircon samples including three IUGS age standards is as accurate as the external detector method, but can give a higher‐precision age depending on the counting statistics of the U content measurement. Double dating of the IUGS age standards gives FT and U–Pb ages that are in agreement. A chip of the Nancy 91500 zircon has a homogeneous U content of 84 ppm, suggesting the possibility of using this zircon as a matrix‐matched U‐standard for FT dating. When using the Nancy 91500 zircon as a U‐standard, a zeta calibration value of 42–43 year cm2 for LA–ICP–MS FT dating is obtained. While this value is strictly valid only for the particular session, it can serve as a reference for other studies.  相似文献   

4.
The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts206Pb and238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0–1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome.Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.  相似文献   

5.
依据钻孔系统稳态测温、静井温度资料与实测热导率数据分析了柴达木盆地地温场分布特征,建立了柴达木盆地热导率柱,新增了17个大地热流数据.柴达木盆地现今地温梯度介于17.1~38.6℃·km-1,平均为28.6±4.6℃·km-1,大地热流介于32.9~70.4mW·m-2,平均55.1±7.9mW·m-2.盆地不同构造单元地温场存在差异,昆北逆冲带、一里坪坳陷属于"高温区",祁南逆冲带属于"中温区",三湖坳陷、德令哈坳陷及欧龙布鲁克隆起属于"低温区",盆地现今地温场分布特征受控于地壳深部结构、盆地构造等因素.以现今地温场为基础,采用磷灰石、锆石裂变径迹年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,研究了柴达木盆地晚古生代以来的沉积埋藏、抬升剥蚀和热演化史,并结合区域构造背景,对柴达木盆地构造演化过程进行了探讨,研究表明柴达木盆地晚古生代以来经历了六期(254.0—199 Ma,177—148.6 Ma,87—62 Ma,41.1—33.6 Ma,9.6—7.1 Ma,2.9—1.8 Ma)构造运动,六期构造事件与研究区构造演化的动力学背景相吻合.其中白垩纪末期(87—62 Ma)的构造事件导致了柴达木盆地东部隆升并遭受剥蚀,欧龙布鲁克隆起形成雏形,柴达木盆地北缘在弱挤压环境下形成坳陷盆地;中新世末的两期构造事件(9.6—7.1 Ma和2.9—1.8 Ma)使柴达木盆地遭受强烈挤压,盆地快速隆升,构造变形强烈,基本形成现今的构造面貌.  相似文献   

6.
The geochronology of cave deposits in the Cradle of Humankind UNESCO World Heritage Site in South Africa provides a timeframe essential for the interpretation of its fossils. The uranium-lead (U–Pb) and uranium-thorium disequilibrium (U/Th) dating of speleothems, mostly flowstones that underlie and blanket the fossil-bearing sediments, have been effective in this sense, but U–Pb is limited by the requirement of ∼1 ppm U concentrations and low common Pb contents, and U/Th has a c. 500 ka limit of applicability. Here we report age results for calcite-aragonite speleothems obtained using a new combined uranium-thorium-helium ((U,Th)–He) and U/Th dating routine. We reproduced within analytical uncertainty, the published U–Pb or U/Th ages for (a) flowstone in three drill core samples in the range 2000–3000 ka, (b) a flowstone hand sample taken at surface with an age of 1800 ka, and (c) five underground flowstone samples in the range 100–800 ka. Calcite retentivity for He under cave conditions is thus demonstrated. In the few cases where helium loss was observed in speleothems, only some of the subsamples were affected, and to varying degrees, suggesting loss by lattice damage not related to diagenetic processes, rather than volume diffusion. In the 100 to 800 ka range, the combined U/Th disequilibrium and (U,Th)–He method also yielded reliable values for initial (230Th/238U) and (234U/238U) activity ratios. Importantly, most subsamples had high initial (230Th/238U) values, ranging from 1.0 to 19.7, although having low Th/U ratios. This is probably due to incorporation of Fe–Mn oxides-hydroxides dust, on which 230Th was previously adsorbed. Such samples are mostly not dateable by U/Th without the additional input from the He analysis. If not detected and corrected for, such high initial (230Th/238U) values can lead to inaccurate U/Th and U–Pb ages. Our study shows that the incorporation of He analysis in U/Th dating has broad potential application, with four methods for calculating the ages, in carbonates from different environments where U-Pb or U/Th dating would not work.  相似文献   

7.
REE and Ba, Th, U, Au, Hf, Sb, Sc and Cs were determined by neutron activation techniques on samples belonging to an acidic high-K charnockitic formation outcropping along the coast of Sa?o Paulo State, Brazil. This formation was dated by the Rb-Sr method and gave whole-rock isochron ages of 546–558 m.y. and initial87Sr/86Sr ratios of 0.7098–0.7117. A mineral isochron gave an age of 479 m.y. Isotopic and geochemical data support the hypothesis that these rocks derive from the intrusion of a granitic magma produced by crustal anatexis. The source rocks were probably differentiated from the mantle 300–700 m.y. before the solidification of the charnockite. Th/U, K/Cs and Rb/Cs ratios and Au concentrations indicate that the source rock probably was of high metamorphic grade.  相似文献   

8.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

9.
Fission track ages of North American tektites from Texas, Georgia and Martha's vineyard range widely between 0.8 my and 34.2 my with the tektites from Georgia giving the lowest ages. Size studies of the fission track etch pits reveal the thermal history of each individual tektite resulting in the partial loss of tracks. Therefore, the measured fission track ages can be understood as thermally lowered.

Based on annealing experiments, correction factors for the thermally lowered fission track ages are found. The weighted mean of the corrected fission track ages is 34.9 my for the bediasites and the Martha's Vineyard tektite. On the other hand, the corrected fission track ages of the Georgia tektites are much lower resulting from a more complex thermal history.

It may now be stated that North American tektites and Libyan Desert glasses cannot have had a simultaneous origin.  相似文献   


10.
U–Pb geochronological, trace-element and Lu–Hf isotopic studies have been made on zircons from ultrahigh-pressure (UHP) mafic eclogite from the Kumdy-Kol area, one of the diamond-facies domains of the Kokchetav Massif (northern Kazakhstan). The peak eclogitic assemblage equilibrated at > 900 °C, whereas the bulk sample composition displays light rare-earth element (LREE) and Th depletion evident of partial melting. Zircons from the eclogite are represented by exclusively newly formed metamorphic grains and have U–Pb age spread over 533–459 Ma, thus ranging from the time of peak subduction burial to that of the late post-orogenic collapse. The major zircon group with concordant age estimates have a concordia age of 508.1 ±4.4 Ma, which corresponds to exhumation of the eclogite-bearing UHP crustal slice to granulite- or amphibolite-facies depths. This may indicate potentially incoherent exhumation of different crustal blocks within a single Kumdy-Kol UHP domain. Model Hf isotopic characteristics of zircons (εHf(t) +1.5 to +7.8, Neoproterozoic model Hf ages of 1.02–0.79 Ga) closely resemble the whole-rock values of the Kumdy-Kol eclogites and likely reflect in situ derivation of HFSE source for newly formed grains. The ages coupled with geochemical systematics of zircons confirm that predominantly late zircon growth occurred in Th–LREE-depleted eclogitic assemblage, that experienced incipient melting and monazite dissolution in melt at granulite-facies depths, followed by amphibolite-facies rehydration during late-stage exhumation-related retrogression.  相似文献   

11.
Zircon is an accessory mineral occurring in many types of rocks. For the rich content of U and low content of common Pb, it is the principal mineral used for U-Th-Pb dating. It can be sur-vived during weathering, transiting, high-grade metamorphism and ev…  相似文献   

12.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   

13.
The Ekomedion two-mica granite,southwestern Cameroon,has potential for uranium and molybdenum mineralization.Here,we present LA-ICP-MS U-Pb ages,Lu-Hf isotope characteristics,trace element concentrations and Ti-geothermometry of zircon from this granite hosting U-Mo mineralization in pegmatitic pods.The majority of zircon are CL-dark though some CL-bright cores were also identified.U-Pb zircon age data range from 121±3 to743±11 Ma with only 5 of 34 ages being near concordant.The concordant mean age of 603±12 Ma is similar to ages of granitic intrusions along the Central African Shear Zone in Cameroon.Apparent ages with mean of261±6 Ma reveal open system behavior with respect to Pb and/or U.Zircon e Hfi values range from-20.3 to-0.3.This implies that U-Mo was remobilized during partial melting of the surrounding gneiss.Zircon Th/U>0.1 as well as an increasing Hf with decreasing Th/U indicates that fractional crystallization was the main factor that controlled U-Mo mineralization in pegmatitic pods.Y and Y/Ho ratios cluster from 29 to 33 close to the chondritic ratio of 28 and indicate fractionation of Y and Ho with low F contents during the earliest stages of crystallization.Late stage accumulation of F-rich magmatic-hydrothermal fluids impacted U-Mo mineralization as a ligand.Zircon contains a prominent negative Eu anomaly pointing to a fractionating system rich in plagioclase.Calculated Ti-in-zircon temperatures span 672℃to1232℃with the temperatures at the high end reflecting interference from mineral inclusions in the zircon grains while the lower temperature values are linked to crystallization.  相似文献   

14.
Approximation of terrestrial lead isotope evolution by a two-stage model   总被引:13,自引:0,他引:13  
Parameters on which models for terrestrial lead isotope evolution are based have recently been revised. These parameters are the isotopic composition of troilite lead, the age of the meteorite system and the decay constants of uranium and thorium. As a result, the normal single-stage model in which the age of the earth is taken to be that of the meteorite system is now untenable.A two-stage model has been constructed which permits the age of the earth to be that of the meteorite system and which also yields good model ages for samples of all ages. The new model postulates that lead developed initially from a primordial composition assumed to be that of troilite lead beginning at 4.57 b.y. ago. The average values of 238U/204Pb and 232Th/204Pb for this first stage were 7.19 and 32.21 respectively. At approximately 3.7 b.y. ago differentiation processes brought about the conditions of a second stage, in which 238U/204Pb ≈ 9.74 and 232Th/204Pb ≈ 37.19 in those portions of the earth which took part in mixing events, giving rise to average lead.  相似文献   

15.
It is revealed by CL images that there are multi-stage growth internal structures of zircons in the Huangtuling granulite, including the inherited zircons, protolith zircons, sector and planar zone zircons and retrograde zircons. In-situ trace element compositions and Pb-Pb ages have been analyzed by LAM-ICP-MS. The sector and the planar zone domains show typical trace element characteristics of granulite zircon (low Th, U, Th/U, total REEs, clear negative Eu anomalies, relatively depleted HREE and small differential degree between MREE and HREE, etc.), indicating that they formed during granulite-facies metamorphism. The protolith zircons have trace element characteristics of crustal zircon (high Th, U, Th/U, total REEs and enriched HREEs, etc.). 12 analyzed spots on granulite-facies domains give a weighted mean 207Pb/206Pb age of (2154±26) Ma (MSWD = 3.8), which is the best estimated age of granulite-facies metamorphism of this sample. The weighted mean 207Pb/206Pb age of 5 analyzed spots on protolith zircon domains is (2714 ± 22) Ma (MSWD = 1.4), which represents the protolith forming time. The discovery of ca. 3.4 Ga inherited zircon indicates that there are Palaeoarchean continental materials in this area. The interpretation of formation conditions and the ages of zircons can be constrained by simultaneous in-situ analysis of trace elements and ages.  相似文献   

16.
合肥盆地构造热演化的裂变径迹证据   总被引:12,自引:0,他引:12       下载免费PDF全文
运用裂变径迹分析方法,探讨分析了合肥盆地中新生代的构造热演化特征. 上白垩统和古近系下段样品的磷灰石裂变径迹(AFT)数据主体表现为靠近部分退火带顶部温度(±65℃)有轻度退火,由此估算晚白垩世至古近纪早期合肥盆地断陷阶段的古地温梯度接近38℃/km,高于盆地现今地温梯度(275℃/km).下白垩统、侏罗系及二叠系样品的AFT年龄(975~25Ma)和锆石裂变径迹(ZFT)年龄(118~104Ma)均明显小于其相应的地层年龄,AFT年龄-深度分布呈现冷却型曲线形态,且由古部分退火带、冷却带或前完全退火带及其深部的今部分退火带组成,指示早白垩世的一次构造热事件和其随后的抬升冷却过程. 基于AFT曲线的温度分带模式和流体包裹体测温数据的综合约束,推算合肥盆地早白垩世走滑压陷阶段的古地温梯度接近67℃/km. 径迹年龄分布、AFT曲线拐点年龄和区域抬升剥蚀时间的对比分析结果表明,合肥盆地在早白垩世构造热事件之后的104Ma以来总体处于抬升冷却过程,后期快速抬升冷却事件主要发生在±55Ma.  相似文献   

17.
The fission track dating method is applied to glass shards from volcanic ash layers in deep sea sediments which have also been dated by other methods. Measured ages for three samples are in excellent agreement with previously determined K-Ar, paleomagnetic and paleontologic ages. The fission track method of dating of glass shards seems to offer itself as a valuable tool for dating marine sediments.  相似文献   

18.
It is suggested that the carbonaceous chondrite fission krypton and xenon, as measured in the primitive meteorites, may have been produced by nuclear fission induced by CNO flare particles in the few-MeV/nucleon energy range on very heavy target elements such as Au, Hg, Tl, Pb, and Bi. It is speculatively proposed that the locale of this process has been the T-Tauri phase of our sun.  相似文献   

19.
Besides Pb and U loss and mixing of crystals of different age, U gain is considered a possible cause of discordant U-Pb ages of zircons. However, whether U gain without new zircon growth occurs in nature had not been proven, so far. In order to test this possibility, two detrital zircon populations were studied for which the absence of later zircon overgrowth after deposition could be demonstrated. The samples were separated from a metaquartzite near a large pegmatite body and from metaquartzite inclusions found in the pegmatite (Martell Valley, Italian Alps). The distribution of neutron-induced fission tracks reveals distinct accumulation of U in the rims of more than 90% of the zircon grains of the inclusions (total U in the crystals: 540–850 ppm), whereas in the country rock only some of the grains show similar but weaker patterns (total U: 155–320 ppm). From the isotopic data and from additional U-Pb and Rb-Sr analyses of minerals and whole-rock samples of the pegmatite, the marginal accumulation and the higher concentration of U in the zircon grains of the inclusions are interpreted as the result of episodic U gain during the intrusion of the pegmatite and/or during a later metamorphism. From the concentration levels of common Pb, an addition of Pb - and possibly other elements - to the zircon grains is inferred.  相似文献   

20.
The Xigaze fore-arc basin is adjacent to the Indian plate and Eurasia collision zone. Understanding the erosion history of the Xigaze fore-arc basin is significant for realizing the impact of the orogenic belt due to the collision between the Indian plate and the Eurasian plate. The different uplift patterns of the plateau will form different denudation characteristics. If all part of Tibet Plateau uplifted at the same time, the erosion rate of exterior Tibet Plateau will be much larger than the interior plateau due to the active tectonic action, relief, and outflow system at the edge. If the plateau grows from the inside to the outside or from the north to south sides, the strong erosion zone will gradually change along the tectonic active zone that expands to the outward, north, or south sides. Therefore, the different uplift patterns are likely to retain corresponding evidence on the erosion information. The Xigaze fore-arc basin is adjacent to the Yarlung Zangbo suture zone. Its burial, deformation and erosion history during or after the collision between the Indian plate and Eurasia are very important to understand the influence of plateau uplift on erosion. In this study, we use the apatite fission track(AFT)ages and zircon and apatite(U-Th)/He(ZHe and AHe)ages, combined with the published low-temperature thermochronological age to explore the thermal evolution process of the Xigaze fore-arc basin. The samples' elevation is in the range of 3 860~4 070m. All zircon and apatite samples were dated by the external detector method, using low~U mica sheets as external detectors for fission track ages. A Zeiss Axioskop microscope(1 250×, dry)and FT Stage 4.04 system at the Fission Track Laboratory of the University of Waikato in New Zealand were used to carry out fission track counting. We crushed our samples finely, and then used standard heavy liquid and magnetic separation with additional handpicking methods to select zircon and apatite grains. The new results show that the ZHe age of the sample M7-01 is(27.06±2.55)Ma(Table 2), and the corresponding AHe age is(9.25±0.76)Ma. The ZHe and AHe ages are significantly smaller than the stratigraphic age, indicating suffering from annealing reset(Table 3). The fission apatite fission track ages are between(74.1±7.8)Ma and(18.7±2.9)Ma, which are less than the corresponding stratigraphic age. The maximum AFT age is(74.1±7.8)Ma, and the minimum AFT age is(18.7±2.9)Ma. There is a significant north~south difference in the apatite fission track ages of the Xigaze fore-arc basin. The apatite fission track ages of the south part are 74~44Ma, the corresponding exhumation rate is 0.03~0.1km/Ma, and the denudation is less than 2km; the apatite fission track ages of the north part range from 27 to 15Ma and the ablation rate is 0.09~0.29km/Ma, but it lacks the exhumation information of the early Cenozoic. The apatite(U-Th)/He age indicates that the north~south Xigaze fore-arc basin has a consistent exhumation history after 15Ma. The results of low temperature thermochronology show that exhumation histories are different between the northern and southern Xigaze fore-arc basin. From 70 to 60Ma, the southern Xigaze fore-arc basin has been maintained in the depth of 0~6km in the near surface, and has not been eroded or buried beyond this depth. The denudation is less than the north. The low-temperature thermochronological data of the northern part only record the exhumation history after 30Ma because of the young low-temperature thermochronological data. During early Early Miocene, the rapid erosion in the northern part of Xigaze fore-arc basin may be related to the river incision of the paleo-Yarlungzangbo River. The impact of Great Count Thrust on regional erosion is limited. The AHe data shows that the exhumation history of the north-south Xigaze fore-arc basin are consistent after 15Ma. In addition, the low-temperature thermochronological data of the northern Xigaze fore-arc basin constrains geographic range of the Kailas conglomerate during the late Oligocene~Miocene along the Yarlung Zangbo suture zone. The Kailas Basin only develops in the narrow, elongated zone between the fore-arc basin and the Gangdese orogenic belt. The southern part of the Xigaze fore-arc basin has been uplifted from the sea level to the plateau at an altitude of 4.2km, despite the collision of the Indian plate with the Eurasian continent and the late fault activity, but the plateau has been slowly denuded since the early Cenozoic. The rise did not directly contribute to the accelerated erosion in the area, which is inconsistent with the assumption that rapid erosion means that the orogenic belt begins to rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号