首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinel is widespread in the ultramafic core rocks of zoned late Precambrian mafic–ultramafic complexes from the Eastern Desert of Egypt. These complexes; Gabbro Akarem, Genina Gharbia and Abu Hamamid are Precambrian analogues of Alaskan-type complexes, they are not metamorphosed although weakly altered. Each intrusion is composed of a predotite core enveloped by pyroxenites and gabbros at the margin. Silicate mineralogy and chemistry suggest formation by crystal fractionation from a hydrous magma. Relatively high Cr2O3 contents are recorded in pyroxenes (up to 1.1 wt.%) and amphiboles (up to 1.4 wt.%) from the three plutons. The chrome spinel crystallized at different stages of melt evolution; as early cumulus inclusions in olivine, inclusions in pyroxenes and amphiboles and late-magmatic intercumulus phase. The intercumulus chrome spinel is homogenous with narrow-range of chemical composition, mainly Fe3+-rich spinel. Spinel inclusions in clinopyroxene and amphibole reveal a wide range of Al (27–44 wt.% Al2O3) and Mg (6–13 wt.% MgO) contents and are commonly zoned. The different chemistries of those spinels reflect various stages of melt evolution and re-equilibration with the host minerals. The early cumulus chrome spinel reveals a complex unmixing structures and compositions. Three types of unmixed spinels are recognized; crystallographically oriented, irregular and complete separation. Unmixing products are Al-rich (Type I) and Fe3+-rich (Type II) spinels with an extensive solid solution between the two end members. The compositions of the unmixed spinels define a miscibility gap with respect to Cr–Al–Fe3+, extending from the Fe3+–Al join towards the Cr corner. Spinel unmixing occurs in response to cooling and the increase in oxidation state. The chemistry and grain size of the initial spinel and the cooling rate control the type of unmixing and the chemistry of the final products. Causes of spinel unmixing during late-magmatic stage are analogous to those in metamorphosed complexes. The chemistry of the unmixed spinels is completely different from the initial spinel composition and is not useful in petrogenetic interpretations. Spinels from oxidized magmas are likely to re-equilibrate during cooling and are not good tools for genetic considerations.  相似文献   

2.
The Sudbury Structure, formed by meteorite impact at 1850 Ma, consists of three major components: (1) the Sudbury Basin; (2) the Sudbury Igneous Complex, which surrounds the basin as an elliptical collar; and (3) breccia bodies in the footwall known as Sudbury Breccia. In general, the breccia consists of subrounded fragments set in a dark, fine-grained to aphanitic matrix. A comparison of the chemical composition of host rocks, clasts and matrices indicates that brecciation was essentially an in-situ process. Sudbury Breccia forms irregular-shaped bodies or dikes that range in size from mm to km scale. Contacts with the host rocks are commonly sharp. The aspect ratio of most clasts is approximately 2 with the long axes parallel to dike walls. The fractal dimension (Dr)=1.55. Although there appears to be some concentration of brecciation within concentric zones, small Sudbury Breccia bodies within and outside these zones have more or less random strikes and steep dips. Sudbury Breccia bodies near an embayment structure tend to be subparallel to the base of the Sudbury Igneous Complex. Sudbury Breccia occurs as much as 80 km from the outer margin of the Sudbury Igneous Complex. In an inner zone, 5 to 15 km wide, breccia comprises 5% of exposed bedrock with an increase in brecciation intensity in embayment structures. Sudbury Breccia may be classified into three types based on the nature of the matrix: clastic, pseudotachylite and microcrystalline. Clastic Sudbury Breccia, the dominant type in the Southern Province, is characterized by flow-surface structures. Possibly, a sudden rise in pore pressure caused explosive dilation and fragmentation, followed by fluidization and flowage into extension fractures. Pseudotachylite Sudbury Breccia, mainly confined to Archean rocks, apparently formed by comminution and frictional melting. Microcrystalline Sudbury Breccia formed as a result of the thermal metamorphism, of the North Range footwall, by the Sudbury Igneous Complex. This produced a zone, approximately 1.2 km wide, wherein the matrix of the breccia either recrystallized or, locally, melted. An overprint of regional metamorphism obliterated contact effects in the South Range footwall. The Ni–Cu–PGE magmatic sulphide deposits may be classified into four types based on structural setting: Sudbury Igneous Complex–footwall contact, footwall, offset, and sheared deposits. Sudbury Breccia is the main host for footwall deposits (e.g., McCreedy East, Victor, Lindsley). Sudbury Breccia locally hosts mineralization in radial (e.g., Parkin and Copper Cliff) and concentric (e.g., Frood–Stobie) offset dikes.  相似文献   

3.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   

4.
To constrain the post-Pan-African evolution of the Arabian–Nubian Shield, macro-scale tectonic studies, paleostress and fission track data were performed in the Eastern Desert of Egypt. The results provide insights into the processes driving late stage vertical motion and the timing of exhumation of a large shield area. Results of apatite, zircon and sphene fission track analyses from the Neoproterozoic basement indicate two major episodes of exhumation. Sphene and zircon fission track data range from 339 to 410 Ma and from 315 to 366 Ma, respectively. The data are interpreted to represent an intraplate thermotectonic episode during the Late Devonian–Early Carboniferous. At that time, the intraplate stresses responsible for deformation, uplift and erosion, were induced by the collision of Gondwana with Laurussia which started in Late Devonian times. Apatite fission track data indicate that the second cooling phase started in Oligocene and was related to extension, flank uplift and erosion along the actual margin of the Red Sea. Structural data collected from Neoproterozoic basement, Late Cretaceous and Tertiary sedimentary cover suggest two stages of rift formation. (1) Cretaceous strike-slip tectonics with sub-horizontal σ1 (ENE/WSW) and σ3 (NNW/SSE), and sub-vertical σ2 resulted in formation of small pull-apart basins. Basin axes are parallel to the trend of Pan-African structural elements which acted as stress guides. (2) During Oligocene to Miocene the stress field changed towards horizontal NE–SW extension (σ3), and sub-vertical σ1. Relations between structures, depositional ages of sediments and apatite fission track data indicate that the initiation of rift flank uplift, erosion and plate deformation occurred nearly simultaneously.  相似文献   

5.
The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite–K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400 ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5 Ma, between 25.5 to 32.5 Ma, and about 3.8 Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu–Au deposits, (2) magmatic Fe–Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu–Au and polymetallic skarn deposits are associated with quartz–albite porphyry bodies. The Fe–Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc.The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia.  相似文献   

6.
Rocks of the Neoproterozoic Mwashya Subgroup (former Upper Mwashya) form the uppermost sedimentary unit of the Roan Group. Based on new field and drill hole observations, the Mwashya is subdivided into three formations: (1) Kamoya, characterized by dolomitic silty shales/siltstones/sandstones and containing a regional marker (the “Conglomerate de Mwashya” bed or complex); (2) Kafubu, formed by finely bedded black carbonaceous shales; and (3) Kanzadi, marked by feldspathic sandstones. Rocks of the Mwashya Subgroup are overlain by the Sturtian age Grand Conglomérat diamictite (equivalent to the Varianto/Brazil and Chuos/Namibia diamictites), and conformably overlie rocks of the Kansuki Formation (former Lower Mwashya), a carbonate unit containing volcaniclastic beds. New geochemical data confirm the continental rift context of this magmatism, which is contemporaneous with rift-related volcanism of the Askevold Formation (Nosib Group, Namibia). A gradational lithological transition between rocks of the Kansuki and the underlying Kanwangungu Formations, and similar petrological composition of these two formations, support the hypothesis that the Kansuki is the uppermost unit of the carbonate-dominated Dipeta/Kanwangungu sequence, and does not form part of the Mwashya Subgroup. Base metal deposits, mostly hosted in rocks of the Kansuki Formation, include weakly disseminated early-stage low-grade Cu–Co mineralisation, which was reworked and enriched, or initially deposited, by metamorphic fluids associated with the Lufilian orogenic event.  相似文献   

7.
The Hongqiling Cu–Ni sulfide deposit in central Jilin Province is located in the eastern part of the Central Asian Orogenic Belt. Rhenium and osmium isotopes in sulfide minerals from the deposit are used to determine the timing of mineralization and the source of osmium, and ore metals. Sulfide ore samples have osmium and rhenium concentrations of 0.28–1.07 ppb and 2.39–13.17 ppb, respectively. Ten analyses yield an isochron age of 223 ± 9 Ma, indicating that the Cu–Ni sulfide deposit in the area formed in the Triassic. The initial 187Os/188Os ratio is around 0.295 ± 0.019 (MSWD = 1.14) and the δ34S values of sulfide ores vary from ?1.50 to +3.00‰. These data indicate that the mineralizing materials were derived mainly from a mantle with some quantities of crustal components introduced into the rock‐forming and ore‐forming systems during mineralization and magmatic emplacement.  相似文献   

8.
The Ernest Henry Fe oxide Cu–Au (IOCG) deposit (>ca. 1.51 Ga) is hosted by breccia produced during the waning stages of an evolving hydrothermal system that formed a number of tens of metres to a kilometre scale, pre- and syn-ore alteration halos, although no demonstrable patterns have been attributed to fluids expelled through the outflow zones. However, the recognition of a population of hypersaline fluid inclusions representing the ‘spent’ fluids after Cu–Au deposition at Ernest Henry provides the basis to model the geochemical characteristics of the deposit's outflow zones. Geochemical modeling at 300 °C was undertaken at both high and low fluid/rock ratios via FLUSH models involving three host rock types: (1) granite, (2) calc–silicate rock, and (3) graphitic schist. In models run at high fluid/rock ratios, all rock types are essentially fluid-buffered, and produce an albite–quartz–hematite–barite-rich assemblage, although in low fluid–rock environments, the pH, redox, and geochemical character of the host rock exerts a greater influence on the mineralogy of the alteration assemblages (e.g., andradite, Fe–chlorite, and magnetite). Significant sulphide mineralization was predicted in graphitic schist where sphalerite occurred in both low- and high-porosity models, which indicates the possibility of an association between high-temperature IOCG mineralization and lower temperature base metal mineralization.Cooling experiments (from 300 to 100 °C) using the ‘spent fluids’ predict early high-T (300–200 °C) Na-, Ca-, Fe-, and Mn-rich, magnetite-bearing hydrothermal associations, whereas with cooling to below 200 °C, and with progressive fluid–rock interaction, the system produces rhodochrosite-bearing, hematite–quartz–muscovite–barite-rich assemblages. These results show that the radical geochemical and mineralogical changes associated with cooling and progressive fluid influx are likely to be accompanied by major transformations in the geophysical expression (e.g., spectral and magnetic character) of the alteration in the outflow zone, and highlight the potential link between magnetite- and hematite-bearing IOCG hydrothermal systems.  相似文献   

9.
The Nuri Cu–W–Mo deposit is a large newly explored deposit located at the southern margin of the Gangdese metallogenic belt. There are skarn and porphyry mineralizations in the deposit, but the formation age of the skarn and the relationship between the skarn and porphyry mineralizations are controversial. Constraints on the precise chronology are of fundamental importance for understanding the ore genesis of the Nuri deposit. To determine the formation age of the skarn, we chose garnets and whole rock skarn samples for Sm–Nd dating. We also selected biotite associated with potassic alteration for Ar–Ar dating to confirm the ore formation age of the porphyry mineralizations. The Sm–Nd ages of the skarn are 25.73 ± 0.92 – 25.2 ± 3.9 Ma, and the age of the potassic alteration is 24.37 ± 0.32 Ma. The results indicate that the skarn and porphyry mineralization are coeval and belong to a unified magmatic hydrothermal system. Combined with a previous molybdenite Re–Os age, we think that the hydrothermal activity of the Nuri deposit lasted for 1.2 – 2.1 Myr, which indicates that the mineralization formed rapidly. The chronologic results indicate that the Nuri deposit formed in the period of transformation from compression to extension in the late collisional stage of the collision between the Indian and Eurasian continents.  相似文献   

10.
The Jilongshan skarn Cu–Au deposit is located at the Jiurui ore cluster region in the southwestern part of the Middle–Lower Yangtze River valley metallogenic belt. The region is characterized by NW‐, NNW‐ and EW‐trending faults and the mineralization occurs at the contact of lower Triassic carbonate rocks and Jurassic granodiorite porphyry intrusions. The intrusives are characterized by SiO2, K2O, and Na2O concentrations ranging from 61.66 to 67.8 wt.%, 3.29 to 5.65 wt.%, and 2.83 to 3.9 wt.%, respectively. Their A/CNK (A/CNK = n(Al2O3)/[n(CaO) + n(Na2O) + n(K2O)]) ratio, δEu, and δCe vary from 0.77 to 1.17, 0.86 to 1, and 0.88 to 0.96, respectively. The rocks show enrichment in light rare earth elements ((La/Yb)N = 7.61–12.94) and large ion lithophile elements (LILE), and depletion in high field strength elements (HFSE), such as Zr, Ti. They also display a peraluminous, high‐K calc‐alkaline signature typical of intrusives associated with skarn and porphyry Cu–Au–Mo polymetallic deposits. Laser ablation inductively coupled plasma spectrometry (LA‐ICP‐MS) zircon U–Pb age indicates that the granodiorite porphyry formed at 151.75 ± 0.70 Ma. A few inherited zircons with older ages (677 ± 10 Ma, 848 ± 11 Ma, 2645 ± 38 Ma, and 3411 ± 36 Ma) suggest the existence of an Archaean basement beneath the Middle–Lower Yangtze River region. The temperature of crystallization of the porphyry estimated from zircon thermometer ranges from 744.3 °C to 751.5 °C, and 634.04 °C to 823.8 °C. Molybdenite Re–Os dating shows that the Jilongshan deposit formed at 150.79 ± 0.82 Ma. The metallogeny and magmatism are correlated to mantle–crust interaction, associated with the subduction of the Pacific Plate from the east. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced  600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at  730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and  730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

12.
《Resource Geology》2018,68(3):209-226
Shin‐Otoyo, Suttsu, Teine, Date, Chitose, and Koryu are sites rich in precious and base metal Miocene–Pleistocene epithermal deposits, and located in southwestern Hokkaido, Japan. The deposits are predominantly hosted by the Green Tuff Formation of Middle Miocene age. Ore petrographic study of these deposits shows the occurrence of variable quantities of Cu–As–Sb–Ag–Bi–Pb–Te sulfosalt minerals. Determination of mineralogical and chemical compositions of the sulfosalt minerals was undertaken to elucidate the time and spatial changes of the sulfide‐sulfosalt minerals. Various types of sulfosalt minerals identified from gold–silver and base metal quartz–sulfide veins represented some sulfosalt mineralization phases, such as the Cu–Fe–Sn–S phase of mawsonite and stannite; Cu–(As,Sb)–S phase of tetrahedrite–tennantite and luzonite–famatinite series minerals; (Cu,Ag)–Bi–Pb–S phase of emplectite, pavonite, friedrichite, aikinite, and lillianite–gustavite series minerals; (Ag,Cu)–(As,Sb)–S phase of proustite–pyrargyrite and pearceite–polybasite series minerals; and Bi–Te–S phase of tetradymite and kawazulite minerals. There are some trends in the paragenetic sequence of sulfosalt mineralization in southwestern Hokkaido (in complete or partial) as follows: sulfide → Cu–Fe–Sn–S → (Cu,Ag)–Bi–Pb–S → (Bi–Te–S) → Cu–(As,Sb)–S → ([Ag,Cu]–[As,Sb]–S). The formation of sulfosalt minerals is characterized by the introduction of some elements such as Sn, Bi, and Te at an earlier stage and an increase or decrease of some elements such as As and Sb, followed by the introduction of Ag at the later stage of ore mineral paragenesis sequence. Mineral composition of the Chitose and Koryu deposits are slightly different from those of Shin‐Otoyo, Suttsu, Teine, and Date due to their lack of Sn (tin) and Bi (bismuth) mineralization. The variable concentrations and relationships are not simply with redistributed trace elements from the original sulfide minerals of chalcopyrite, pyrite, galena, and sphalerite. Some heavier elements were also introduced during the replacement reaction, which is consistent with the occurrence of their associated minerals.  相似文献   

13.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

14.
The widely distributed late‐collisional calc‐alkaline granitoids in the northern Arabian–Nubian Shield (ANS) have a geodynamic interest as they represent significant addition of material into the ANS juvenile crust in a short time interval (∼630–590 Ma). The Deleihimmi granitoids in the Egyptian Central Eastern Desert are, therefore, particularly interesting since they form a multiphase pluton composed largely of late‐collisional biotite granitoids enclosing granodiorite microgranular enclaves and intruded by leuco‐ and muscovite granites. Geochemically, different granitoid phases share some features and distinctly vary in others. They display slightly peraluminous (ASI = 1–1.16), non‐alkaline (calc‐alkaline and highly fractionated calc‐alkaline), I‐type affinities. Both biotite granitoids and leucogranites show similar rare earth element (REE) patterns [(La/Lu)N = 3.04–2.92 and 1.9–1.14; Eu/Eu* = 0.26–0.19 and 0.11–0.08, respectively) and related most likely by closed system crystal fractionation of a common parent. On the other hand, the late phase muscovite granites have distinctive geochemical features typical of rare‐metal granites. They are remarkably depleted in Sr and Ba (4–35 and 13–18 ppm, respectively), and enriched in Rb (381–473 ppm) and many rare metals. Moreover, their REE patterns show a tetrad effect (TE1,3 = 1.13 and 1.29) and pronounced negative Eu anomalies (Eu/Eu* = 0.07 and 0.08), implying extensive open system fractionation via fluid–rock interaction during the magmatic stage. Origin of the calc‐alkaline granitoids by high degree of partial melting of mafic lower crust with subsequent crystal fractionation is advocated. The broad distribution of late‐collisional calc‐alkaline granitoids in the northern ANS is related most likely to large areal and intensive lithospheric delamination subsequent to slab break‐off and crustal/mantle thickening. Such delamination caused both crustal uplift and partial melting of the remaining mantle lithosphere in response to asthenospheric uprise. The melts produced underplate the lower crust to promote its melting. The presence of microgranular enclaves, resulting from mingling of mantle‐derived mafic magma with felsic crustal‐derived liquid, favours this process. The derivation of the late‐phase rare‐metal granites by open system fractionation via fluid interaction is almost related to the onset of extension above the rising asthenosphere that results in mantle degassing during the switch to post‐collisional stage. Consequently, the switch from late‐ to post‐collisional stage of crustal evolution in the northern ANS could be potentially significant not only geodynamically but also economically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

16.
The Katanga Copperbelt is the Congolese part of the well-known Central African Copperbelt, the largest sediment-hosted stratiform Cu–Co province on Earth. Petrographic examination of borehole samples from the Kamoto and Luiswishi mines in the Katanga Copperbelt recognized two generations of hypogene Cu–Co sulfides and associated gangue minerals (dolomite and quartz). The first generation is characterized by fine-grained Cu–Co sulfides and quartz replacing dolomite. The second generation is paragenetically later and characterized by coarse-grained Cu–Co sulfides and quartz overgrown and partly replaced by dolomite. Fluid inclusion microthermometric data were collected from two different types of fluid inclusions: type-I fluid inclusions (liquid + vapor) in the quartz of the first generation and type-II fluid inclusions (liquid + vapor + halite) in the quartz of the second generation. The microthermometric analyses indicate that the fluids represented by type-I and type-II fluid inclusions had very different temperatures and salinities and were not in thermal equilibrium with the host rock.Petrographic and microthermometric data indicate the presence of at least two main hypogene Cu–Co sulfide phases in the Katanga Copperbelt. The first is an early diagenetic typical stratiform phase, which produced fine-grained sulfides that are disseminated in the host rock and frequently concentrated in nodules and lenticular layers. This phase is related to a hydrothermal fluid with a moderate temperature (115 to 220 °C, or less if reequilibration of inclusions has occurred) and salinity (11.3 to 20.9 wt.% NaCl equiv.). The second hypogene Cu–Co phase produced syn-orogenic coarse-grained sulfides, which also occur disseminated in the host rock but mainly concentrated in a distinct type of stratiform nodules and layers and in stratabound veins and tectonic breccia cement. This second phase is related to a hydrothermal fluid with high temperature (270 to 385 °C) and salinity (35 to 45.5 wt.% NaCl equiv.).A review of available microthermometric and ore geochronological data of the Copperbelt in both the Democratic Republic of Congo and Zambia supports the regional presence of the two Cu–Co phases proposed in our study. Future geochemical analyses in the Copperbelt should take into account the presence of, at least, these two Cu–Co phases, their contrasting fluid systems and the possible overprint of the first phase by the second one.  相似文献   

17.
After the discovery of the Aguablanca ore deposit (the unique Ni–Cu mine operating in SW Europe), a number of mafic‐ultramafic intrusions bearing Ni–Cu magmatic sulfides have been found in the Ossa–Morena Zone of the Iberian Massif (SW Iberian Peninsula). The Tejadillas prospect is one of these intrusions, situated close to the border between the Ossa–Morena Zone and the South Portuguese Zone of the Iberian Massif. This prospect contains an average grade of 0.16 wt % Ni and 0.08 wt % Cu with peaks of 1.2 wt % Ni and 0.2 wt % Cu. It forms part of the Cortegana Igneous Complex, a group of small mafic‐ultramafic igneous bodies located 65 km west of the Aguablanca deposit. In spite of good initial results, exploration work has revealed that sulfide mineralization is much less abundant than in Aguablanca. A comparative study using whole‐rock geochemical data between Aguablanca and Tejadillas shows that the Tejadillas igneous rocks present a lower degree of crustal contamination than those of Aguablanca. The low crustal contamination of the Tejadillas magmas inhibited the assimilation of significant amounts of crustal sulfur to the silicate magmas, resulting in the sparse formation of sulfides. In addition, Tejadillas sulfides are strongly depleted in PGE, with total PGE contents ranging from 14 to 81 ppb, the sum of Pd and Pt, since Os, Ir, Ru and Rh are usually below or close to the detection limit (2 ppb). High Cu/Pd ratios (9700–146,000) and depleted mantle‐normalized PGE patterns suggest that the Tejadillas sulfides formed from PGE‐depleted silicate magmas. Modeling has led us to establish that these sulfides segregated under R‐factors between 1000 and 10,000 from a silicate melt that previously experienced 0.015% of sulfide extraction. All these results highlight the importance of contamination processes with S‐rich crustal rocks and multiple episodes of sulfide segregations in the genesis of high‐tenor Ni–Cu–PGE ore deposits in mafic‐ultramafic intrusions of the region.  相似文献   

18.
The Tiámaro deposit in Michoacán state has been dated as Lower Cretaceous (Valanginian), though most of the porphyry deposits in central Mexico were dated or have an attributed Eocene–Oligocene age. The host rocks belong to a volcanoplutonic complex overlain by red conglomerates. These rocks were intruded by pre-Valanginian plutonic and hypabissal rocks. Propylitic, phyllic, and argillic alteration assemblages developed, and their superimposition draws the evolution of the deposit. Stage I is represented by propylitic assemblages, stage II contains the main ore forming stockworks and both phyllic and argillic assemblages, and stage III contains late carbonatization assemblages. The obtained temperatures and salinities from inclusion fluids are low for a porphyry-type deposit, but we interpret that the known part of the deposit represents the shallow portion of a bigger deposit. The evolution of mineralizing fluids draws a dilution trend of brines from “porphyry-like” to “epithermal-like” stages. The richest ore zone is roughly located between the 300 and 350 °C isotherms, though unnoticed resources may occur at depth.  相似文献   

19.
Classic porphyry Cu–Mo deposits are mostly characterized by close temporal and spatial relationships between Cu and Mo mineralization. The northern Dabate Cu–Mo deposit is a newly discovered porphyry Cu–Mo polymetallic deposit in western Tianshan, northwest China. The Cu mineralization postdates the Mo mineralization and is located in shallower levels in the deposit, which is different from most classic porphyry Cu–Mo deposits. Detailed field investigations, together with microthermometry, laser Raman spectroscopy, and O‐isotope studies of fluid inclusions, were conducted to investigate the origin and evolution of ore‐forming fluids from the main Mo to main Cu stage of mineralization in the deposit. The results show that the ore‐forming fluids of the main Mo stage belonged to an NaCl + H2O system of medium to high temperatures (280–310°C) and low salinities (2–4 wt% NaCl equivalent (eq.)), whereas that of the main Cu stage belonged to an F‐rich NaCl + CO2 + H2O system of medium to high temperatures (230–260°C) and medium to low salinities (4–10 wt% NaCl eq.). The δ18O values of the ore‐forming fluids decrease from 3.7–7.8‰ in the main Mo stage to ?7.5 to ?2.9‰ in the main Cu stage. These data indicate that the separation of Cu and Mo was closely related to a large‐scale vapor–brine separation of the early ore‐forming fluids, which produced the Mo‐bearing and Cu‐bearing fluids. Subsequently, the relatively reducing (CH4‐rich) Mo‐bearing, ore‐forming fluids, dominantly of magmatic origin, caused mineralization in the rhyolite porphyry due to fluid boiling, whereas the relatively oxidizing (CO2‐rich) Cu‐bearing, ore‐forming fluids mixed with meteoric water and precipitated chalcopyrite within the crushed zone at the contact between rhyolite porphyry and wall rock. We suggest that the separation of Cu and Mo in the deposit may be attributed to differences in the chemical properties of Cu and Mo, large‐scale vapor–brine separation of early ore‐forming fluids, and changes in oxygen fugacity.  相似文献   

20.
The Aguablanca Cu–Ni orthomagmatic ore deposit is hosted by mafic and ultramafic rocks of the Aguablanca stock, which is part of the larger, high-K calc-alkaline Santa Olalla plutonic complex. This intrusive complex, ca. 338 Ma in age, is located in the Ossa-Morena Zone (OMZ) of the Iberian Variscan Belt. Mineralization consists mainly of pyrrhotite, pentlandite and chalcopyrite resulting from the crystallization of an immiscible sulphide-rich liquid. Isotope work on the host igneous rocks (Sr, Nd) and the ore (S) suggests that contamination with an upper-crustal component took place at some depth before final emplacement of the plutons (Nd338=−6 to −7.5; Sr(338)=0.7082 to 0.7100; δ34S(sulphides) near +7.4‰). Assimilation–fractional crystallization (AFC) processes are invoked to explain early cumulates and immiscible sulphide-magma formation. Intrusion took place at the beginning of the type-A oblique subduction of the South Portuguese Zone under the Ossa-Morena Zone and was probably driven by transpressive structures (strike-slip faults). The mineralization is thus synorogenic.Aguablanca is probably the first case referred to in the literature of a magmatic Cu–Ni ore deposit hosted by calc-alkaline igneous rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号