共查询到20条相似文献,搜索用时 93 毫秒
1.
基于低低卫卫跟踪模式,本文主要探讨利用动力学法融合精密轨道数据和星间测距或距离变率数据求解地球重力场的基本原理与方法,该方法既可对两颗低低跟踪卫星的初始状态误差进行有效校正,也可充分利用低轨卫星轨道所包含的低频重力场信息.为探讨适合我国国情的低低跟踪模式下的重力卫星指标,本文以不同星载设备精度指标的组合进行模拟计算,模拟结果显示:(1)把GRACE卫星的星间距离变率指标提高一个量级,其余指标保持与GRACE卫星设计指标一致时,可使地球重力场的精度获得同量级的提高;(2)若星间距离变率为1.0×10-8 m·s-1,轨道高度为300 km,加速度计精度为3.0×10-10 m·s-2,轨道精度为0.03 m, 星间距离100 km,与利用GRACE的设计指标反演出的重力场精度相比,可提高约121倍,并建议我国未来低低跟踪重力卫星计划参考此指标. 相似文献
2.
基于低低卫卫跟踪模式,本文主要探讨利用动力学法融合精密轨道数据和星间测距或距离变率数据求解地球重力场的基本原理与方法,该方法既可对两颗低低跟踪卫星的初始状态误差进行有效校正,也可充分利用低轨卫星轨道所包含的低频重力场信息.为探讨适合我国国情的低低跟踪模式下的重力卫星指标,本文以不同星载设备精度指标的组合进行模拟计算,模拟结果显示:(1)把GRACE卫星的星间距离变率指标提高一个量级,其余指标保持与GRACE卫星设计指标一致时,可使地球重力场的精度获得同量级的提高;(2)若星间距离变率为1.0×10-8m·s-1,轨道高度为300km,加速度计精度为3.0×10-10m·s-2,轨道精度为0.03m,星间距离100km,与利用GRACE的设计指标反演出的重力场精度相比,可提高约121倍,并建议我国未来低低跟踪重力卫星计划参考此指标. 相似文献
3.
The paper presents a high-resolution global gravity field modelling by the boundary element method (BEM). A direct BEM formulation
for the Laplace equation is applied to get a numerical solution of the linearized fixed gravimetric boundary-value problem.
The numerical scheme uses the collocation method with linear basis functions. It involves a discretization of the complicated
Earth’s surface, which is considered as a fixed boundary. Here 3D positions of collocation points are simulated from the DNSC08
mean sea surface at oceans and from the SRTM30PLUS_V5.0 global topography model added to EGM96 on lands. High-performance
computations together with an elimination of the far zones’ interactions allow a very refined integration over the all Earth’s
surface with a resolution up to 0.1 deg. Inaccuracy of the approximate coarse solutions used for the elimination of the far
zones’ interactions leads to a long-wavelength error surface included in the obtained numerical solution. This paper introduces
an iterative procedure how to reduce such long-wavelength error surface. Surface gravity disturbances as oblique derivative
boundary conditions are generated from the EGM2008 geopotential model. Numerical experiments demonstrate how the iterative
procedure tends to the final numerical solutions that are converging to EGM2008. Finally the input surface gravity disturbances
at oceans are replaced by real data obtained from the DNSC08 altimetryderived gravity data. The ITG-GRACE03S satellite geopotential
model up to degree 180 is used to eliminate far zones’ interactions. The final high-resolution global gravity field model
with the resolution 0.1 deg is compared with EGM2008. 相似文献
4.
本文设计了一种高-低卫星跟踪卫星、低-低卫星跟踪卫星和卫星重力梯度测量相结合的新型重力测量卫星系统,其可在一定程度上发挥卫星重力梯度和低低卫星跟踪卫星两种测量模式各自的优势.基于重力卫星系统指标设计的半解析法,深入分析了不同重力测量卫星系统配置和不同观测量及其不同白噪声水平情况下,新型卫星重力测量模式反演重力场模型的能力.数值模拟分析结果表明:在观测值精度和星间距离相同的条件下,轨道高度是影响重力场反演精度的关键因素;随着星间距离的增大,高频重力场信号反演精度会先提高后降低,轨道高度在200~350 km之间时,星间距离在150~180 km之间时反演精度最优;星间距离变率和卫星重力梯度两类观测值仅在某些精度配置时可达到优势互补,如果某一类观测值精度很高,则另一类观测值在联合解算时贡献非常小或者没有贡献.在300 km轨道高度,若以GRACE和GOCE任务的设计指标1 μm·s-1/和5 mE/来配置新型重力测量卫星系统中星间距离变率和引力梯度观测值的精度,联合两类观测值解算200阶次模型大地水准面的精度比独立解算分别提高1.2倍和2.8倍.如果以实现100 km空间分辨率1~2 cm精度大地水准面为科学目标,考虑卫星在轨寿命,建议轨道高度选择300 km,星间距离变率和卫星重力梯度的精度分别为0.1 μm·s-1/和1 mE/.本文的研究成果可为中国研制自主的重力测量卫星系统提供参考依据. 相似文献
5.
A global gravity field model TUG-CHAMP04, derived from CHAMP (CHAllenging Minisatellite Payload) satellite-to-satellite GPS tracking observations in the high-low mode (SST-hl) in combination with CHAMP accelerometry,
is presented and described in detail in this paper. For this purpose the energy integral approach was applied to precise kinematic
orbits and accelerometer data. The advantage of these kinds of orbits is that they are derived from purely geometrical information,
hence no external gravity field information is used for the determination of the positions. The disadvantage of precise kinematic
orbit information is, that no velocities are delivered and hence a procedure has to be elaborated to deduce the velocities
from kinematic positions. This work is done in preparation for ESA’s GOCE (Gravity field and steady state Ocean Circulation Explorer) satellite mission (scheduled launch November 2006), aiming at a high precision and high-resolution gravity field
model on a global scale. This paper concentrates on the CHAMP data processing, where, in contrast to the usual standard method
(processing in the Earth fixed frame), an approach in the inertial frame is chosen. Focus is taken on the data preprocessing
of both accelerometer and orbit data, emphasising on the correct treatment of data-gaps and outlier detection. Furthermore
an arc-wise weighting strategy is introduced and the advantages/disadvantages of this approach are discussed. Finally, the
TUG-CHAMP04 model, calculated from one year of CHAMP data is compared with the official CHAMP gravity field model EIGEN-3p
and terrestrial data (GPS levelling data). 相似文献
6.
Mark Dransfield 《Geophysical Prospecting》2010,58(3):469-483
Gravity derived only from airborne gravity gradient measurements with a normal error distribution will have an error that increases with wavelength. It is straightforward in principle to use sparsely sampled regional gravimeter data to provide the long wavelength information, thereby conforming the derived gravity to the regional gravity. Regional surface or airborne gravimeter data are not always available and can be difficult and expensive to collect in many of the areas where an airborne gravity gradiometer survey is flown. However the recent release by the Danish National Space Centre of the DNSC08 global gravity anomaly data has provided regional gravity data for the entire earth of adequate quality for this purpose. Studies over three areas, including comparisons with ground, marine and airborne gravimetry, demonstrate the validity of this approach. Future improvements in global gravity anomaly data are expected, particularly as the product from the recently launched Gravity field and steady‐state Ocean Circulation Explorer (GOCE) satellite becomes available and these will lead directly to an improvement in the very wide bandwidth gravity available after conforming gravity derived from gravity gradiometry with the global gravity. 相似文献
7.
Ch. Reigber P. Schwintzer W. Barth F. H. Massmann J. C. Raimondo A. Bode H. Li G. Balmino R. Biancale B. Moynot J. M. Lemoine J. C. Marty F. Barlier Y. Boudon 《Surveys in Geophysics》1993,14(4-5):381-393
On the basis of the GRIM4-S1 satellite-only Earth gravity model, being accomplished in a common effort by DGFI and GRGS, a combination solution, called GRIM4-C1, has been derivcd using 1° × 1° mean gravity anomalies and 1° × 1° Seasat altimeter derived mean geoid undulations. In the meantime improvements could be achieved by incorporating more tracking data (GEOSAT, SPOT2-DORIS) into the solution, resulting in the two new parallel versions, the satellite-only gravity model GRIM4-S2 and the combined solution GRIM4-C2p (preliminary). All GRIM4 Earth gravity models cover the spectral gravitational constituents complete up to degree and order 50.In this report the emphasis is on the discussion of the combined gravity models: combination and estimation techniques, capabilities for application in precise satellite orbit computation and accuracies in long wavelength geoid representation. It is shown that with the new generation of global gravity models general purpose satellite-only models are no longer inferior to combination solutions if applied to satellite orbit restitution. 相似文献
8.
分析了地球自转引起的位旋转效应公式中采用近似速度的影响. 对一组GFZ的快速科学轨道、一组TUM的约化动力法轨道以及一组GFZ的事后科学轨道,计算了星历提供的速度与只有地球引力场对卫星产生作用时的卫星速度的差值,其中参考重力场模型分别采用EGM96、EIGEN2和EIGEN_CG01C. 通过比较得出:轨道数据与EIGEN2地球重力场模型的自恰性优于EGM96和EIGEN_CG01C地球重力场模型. 速度差各分量的变化具有很明显的周期性且与卫星轨道的运行周期相吻合. 当要求在卫星轨迹处获得1m2/s2精度的扰动位时,也即要求位旋转效应公式中卫星速度的近似精度小于2mm/s时,GFZ的快速科学轨道、TUM的约化动力法轨道只需要剔除那些速度精度不满足要求的卫星轨迹点;当要求在卫星轨迹处获得0.5m2/s2精度的扰动位时,应当重新估算上述轨道的速度信息,或采用精度更高的GFZ事后科学轨道. 相似文献
9.
Jiří Nedoma 《Pure and Applied Geophysics》1973,110(1):1899-1910
Summary In the present paper the gravity field of the earth in the neighbourhood of the local disturbing masses is studied. The object of the method presented consists of the approximation of the disturbing potentialT
h
, which fulfils Laplace's equation outside disturbing masses, on the earth's surface the fundamental boundary value condition of gravity and in infinity it is to be regular by the approximation of the disturbing potential (or by the discrete disturbing potential)T
h
, which fulfils the respective finite difference approximation of Laplace's equation and the boundary value conditions in infinity and on the earth's surface. It is also shown that the approximation of the disturbing potentialT
h
has the same properties as the disturbing potentialT. The method under consideration will be derived quite generally without any hypothesis about the distribution of the mass between the earth's surface and the geoid. It commences from the gravity data related to the earth's surface only-from the given geodetic measurements. 相似文献
10.
11.
Richard H. Rapp 《Surveys in Geophysics》1975,2(2):193-216
The Earth's gravity field can be determined from gravity measurements made on the surface of the Earth, and through the analysis of the motion of Earth satellites. Gravity data can be used to solve the boundary value problem of gravimetric geodesy in various ways, from the classical formulation using a geoid to the concept of a reference surface interior to the masses of the Earth to a statistical method. We now have gravity information for 10 data blocks over 46% of the Earth's surface and more than several million point measurements available.Satellite observations such as range, range-rate, and optical data have been analyzed to determine potential coefficients used to describe the Earth's gravitational potential field. Coefficients, in a spherical harmonic expansion to degree 12, can be determined from satellite data alone, and to at least degree 20 when the satellite data is combined with surface gravity material. Recent solutions for potential coefficients agree well to degree 4, but with increasing disagreement at higher degrees. 相似文献
12.
13.
重力辅助惯性导航是真正的无源导航,它已成为21世纪无源导航定位技术的主要研究方向之一.本文在进行了一般性的尺度概念及多尺度系统理论概述之后,结合重力场的固有特性,分别从重力场的模型尺度特性、空间尺度特性以及时间尺度特性详细介绍了地球重力场固有的多尺度特性.另外,根据重力辅助惯性导航系统中重力场数据的作用,从利用重力场实... 相似文献
14.
The relationship between Bouguer anomalies and topography has been studied on ten selected profiles through the Apennines. After classifying the Apennines as an asymmetrical active region, a new interpretation has been made of the pairs of gravity-anomaly belts observed in asymmetrical active continental regions where there is no trench. 相似文献
15.
V. N. Koneshov V. B. Nepoklonov O. V. Polovnev 《Izvestiya Physics of the Solid Earth》2017,53(1):108-115
The results of the theoretical and experimental research on the technique for refining the global Earth geopotential models such as EGM2008 in the continental regions are presented. The discussed technique is based on the high-resolution satellite data for the Earth’s surface topography which enables the allowance for the fine structure of the Earth’s gravitational field without the additional gravimetry data. The experimental studies are conducted by the example of the new GGMplus global gravity model of the Earth with a resolution about 0.5 km, which is obtained by expanding the EGM2008 model to degree 2190 with the corrections for the topograohy calculated from the SRTM data. The GGMplus and EGM2008 models are compared with the regional geoid models in 21 regions of North America, Australia, Africa, and Europe. The obtained estimates largely support the possibility of refining the global geopotential models such as EGM2008 by the procedure implemented in GGMplus, particularly in the regions with relatively high elevation difference. 相似文献
16.
从2002年1月到2009年12月的SABER温度剖面数据提取了可以反映重力波活动的垂直尺度2~10 km的中尺度温度扰动,分析了全球中层大气重力波的分布.重力波扰动在夏季和冬季明显强于春季和秋季,而冬季与夏季相比,在70 km以下的高度夏季弱于冬季,在70 km以上夏季比冬季要强.从全球重力波分布来看,较大值分布在冬季半球和25°N到25°S的热带范围,其中热带范围重力波的峰值随着高度向北移动,而在南半球高纬度地区重力波扰动较大值位于极区涡流的边缘.热带范围的扰动沿着经度方向有明显的变化,这是由风过滤、地形和波动等因素共同作用的结果.重力波扰动强度随高度变化,在25~30 km处呈现下降趋势,而超过42 km后又逐渐递增.对比8年平均的重力波在不同高度的强弱分布,可以看到,在较低高度,重力波的强弱明显与地形有关,而在较高高度,重力波的分布与地形的关系变得不明显.这说明重力波的形成与地形有显著相关性,但在传播过程中重力波的分布会随高度出现明显的变化. 相似文献
17.
A global experimental model for gravity tides of the Earth 总被引:1,自引:0,他引:1
The long-term, continuous and high-quality tidal gravity data, recorded with the superconducting gravimeters (SGs) at 19 stations in the Global Geodynamics Project (GGP), were simultaneously used to investigate the global pattern of the tidal gravity variations. The atmospheric effects were removed from the gravity observations by using the simultaneous pressure records at the stations. A total of six global co-tidal models were employed to remove the loading effects of oceanic tides. The resonance parameters of the Earth's free core nutation (FCN), as well as the spheroidal constant components in the gravimetric factors of waves O1 and M2, were accurately retrieved. As a result, a global experimental model for gravity tides (GEMGT) was developed, considering the nearly diurnal resonance and the latitude-dependence of the gravimetric amplitude factors. The final results indicate that the mean discrepancy of the four main tidal waves (i.e. O1, K1, M2 and S2) between the GEMGT and SG observations is less than 0.2% on average. The GEMGT is in good agreement with the theoretical models based on the inelastic non-hydrostatic equilibrium Earth models [Dehant, V., Defraigne, P., Wahr, J., 1999. Tides for a convective Earth. J. Geophys. Res. 104, 1035–1058; Mathews, P.M., 2001. Love numbers and gravimetric factor for diurnal tides. J. Geodetic Soc. Jpn. 46 (4), 231–236] with a mean discrepancy less than 0.15%. However, the GEMGT is in closer accordance with the theoretical model given by Mathews [Mathews, P.M., 2001. Love numbers and gravimetric factor for diurnal tides. J. Geodetic Soc. Jpn. 46 (4), 231–236] for the diurnal tides while it is in closer agreement with one obtained by Dehant et al. [Dehant, V., Defraigne, P., Wahr, J., 1999. Tides for a convective Earth. J. Geophys. Res. 104, 1035–1058] for the semi-diurnal tides. 相似文献
18.
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella “level-2” IAG service (incorporating the International Gravity Bureau, International Geoid Service, International Center for Earth Tides, International Center for Global Earth models, and other future new services for, e.g., digital terrain models), would be a natural key element contributing to GGOS. Major parts of the work of the services would, however, remain complementary to the GGOS contributions, which focus on the long-wavelength components of the geopotential and its temporal variations, the consistent procedures for regional data processing in a unified vertical datum and Terrestrial Reference Frame, and the ensuring validations of long-wavelength gravity field data products. 相似文献
19.
20.
Summary The parameters of the normal Earth's gravity field, determined from contemporary satellite data are discussed and compared with the parameters of the normal Helmert system (1901 to 1909).Dedicated to Academician Alois Zátopek on His 65th Birthday 相似文献