首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper presents the results of determinations of stable S and O isotopes of dissolved sulfates and O and H stable isotopes of waters from three ponds, that is, Marczakowe Do?y acid pond, Marczakowe Do?y fish pond and Podwi?niówka acid pit pond, located in the Holy Cross Mountains (south-central Poland). The δ34SV-CDT and δ18OV-SMOW of SO4 2? in waters of three ponds (n = 14) varied from ?16.2 to ?9.5 ‰ (mean of ?13.6 ‰) and from ?8.1 to ?3.2 ‰ (mean of ?4.8 ‰), respectively. The mean δ34S–SO4 2? values were closer to those of pyrite (mean of ?25.4 ‰) and efflorescent sulfate salts (mean of ?25.6 ‰), recorded previously in the Podwi?niówka quarry, than to sulfates derived from other anthropogenic or soil and bedrock sources. The SO4 2? ions formed by bacterially induced pyrite oxidation combined with bacterial (dissimilatory) dissolved sulfate reduction, and presumably with subordinate mineralization of carbon-bonded sulfur compounds, especially in both Marczakowe Do?y ponds. In addition, the comparison of δ18O–SO4 2? and δ18O–H2O values indicated that 75–100 % of sulfate oxygen was derived from water. Due to the largest size, the Podwi?niówka acid pit pond revealed distinct seasonal variations in both δ18O–H2O (?9.2 to ?1.6) and δD–H2O (?29.7 to ?71.3) values. The strong correlation coefficient (r 2 = 0.99) was noted between δ18O–H2O and δD–H2O values, which points to atmospheric precipitation as the only source of water. The sediments of both acid ponds display different mineral inventory: the Marczakowe Do?y acid pond sediment consists of schwertmannite and goethite, whereas Podwi?niówka acid pit pond sediment is composed of quartz, illite, chlorite and kaolinite with some admixture of jarosite reflecting a more acidic environment. Geochemical modeling of two acid ponds indicated that the saturation indices of schwertmannite and nanosized ε-Fe2O3 (Fe3+ oxide polymorph) were closest to thermodynamic equilibrium state with water, varying from ?1.44 to 3.05 and from ?3.42 to 6.04, respectively. This evidence matches well with the obtained mineralogical results.  相似文献   

2.
Spatial distribution patterns of As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, U and Zn were determined in topsoil samples collected after 40 years of chemical remediation conducted in the inoperative “Staszic” pyrite–uranium mine in the Holy Cross Mountains, south-central Poland. Soil samples were taken from 58 sites using a systematic random sampling design. Selected samples were subjected to an X-ray diffractometry analysis on bulk soils and separated clay fractions. Hematite, goethite and gypsum are common mineral phases in soil samples. Technogenic soils developed on reclaimed mine spoils show uniform spatial element distribution patterns and additionally a distinct enrichment in As, Pb, Mn, U and Zn. Mineral and chemical composition of soils vs. rocks points to the lithogenic source of the determined elements. The results of chemical analysis have been used for evaluation of geochemical background of trace elements in the study area with the iterative 2σ-technique. This investigation shows that using mean crustal element concentrations (Clarke values) as proxies of threshold values in soils are not useful for determination of strongly positive geochemical anomalies. A modified enrichment factor, i.e. a local enrichment factor, is proposed for identification of sites where soils are contaminated.  相似文献   

3.
Metamorphosed during the Variscan orogeny, sediments of the ca. 560 Ma M?ynowiec Formation and ca. 530 Ma Stronie Formation in the Bystrzyckie and Orlickie Mountains (Central Sudetes, Poland) contain metabasites with a range of basaltic compositions. Immobile trace element and Nd isotope features allow distinction of dominant, either E-MORB-like (Group 1: Zr/Nb 9–20, εNd530 +2.6 to +6.7) or mildly enriched N-MORB-like tholeiites (Group 2: Zr/Nb 21–27, εNd530 +0.2 to +6.7), and scarce but genetically important OIB-like alkaline (Group 3: Zr/Nb 5, εNd530 +2.2) or depleted tholeiitic rocks (Group 4: Zr/Nb 67, εNd530 +7.9). Neither the radiogenic age nor age relationships between these four groups are known. However, field evidence suggests that the metabasites are younger than the M?ynowiec Formation and that their emplacement must have been coeval with the accumulation of the Stronie Formation sediments. The OIB affinity of Group 3 is interpreted to reflect an enriched mantle (EM)-type asthenopheric source whilst the groups of tholeiitic rocks indicate involvement of depleted (locally slightly residual) MORB-type mantle (DMM). Several geochemical signatures, the decoupling between Nd isotope and trace element characteristics, and melting models indicate variable enrichment of the DMM-like source, here ascribed to asthenosphere-derived OIB-like melts (Group 1 and 2) and a contribution from a supra-subduction zone (Group 2 and 4). Based on contrasting back-arc basin (BAB)- and within-plate-like affinities of the metabasites, and on petrogenetic constraints from the spatially related infill of the Stronie Formation rift basin, the studied magmatic episode is suggested be related to cessation of the supra-subduction zone activity, presumably induced by ridge-trench collision. This event might have led to slab break-off, the development of a transform plate boundary, opening of a slab window and upward migration of sub-slab enriched asthenosphere. Decompression melting of the upwelling asthenosphere could then have produced OIB-like melts which segregated and infiltrated into the mantle of the former subduction zone, with randomly distributed slab-derived components. In an extensional regime, magmas generated at shallow levels from heterogeneous mantle regions were emplaced within sedimentary rocks of the overlying rift basin. The vestiges of subduction-related processes and within-plate style of mantle enrichment suggest that the metabasites could be related to final stages of the Cadomian orogeny and incipient Early Palaeozoic rifting of Gondwana that heralded the opening of the Rheic Ocean.  相似文献   

4.
The main aim of this study was to assess the natural and anthropogenic contributions of CO2 in the urban atmosphere of Wrocław City (SW Poland) using combined quantitative (CO2 concentrations) and qualitative analysis (δ13C of CO2). Between 21 January 2011 and 22 December 2011, 17 sampling campaigns were performed at 3-week intervals and in total 255 samples were collected. The mean CO2 concentration was 469 ± 71 ppm and the mean δ13C(CO2) was −10.8 ± 1‰.The measured δ13C(CO2) values of major end-members for two winter heating seasons (−25.7‰ in January–March of 2011 and −27.6 ‰ in October–December of 2011) and for one vegetative season (−20.4‰ in April–September of 2011) suggest soil respiration as a main source of atmospheric CO2 during the vegetative season, and a very significant impact of fossil fuel combustion during the winter heating seasons. There were significant increases of CO2 concentrations at many sampling locations after the opening of a new motorway on 31 August 2011. The authors hypothesise that the new motorway contributes to the increase of CO2 across the city.  相似文献   

5.
In this work, a talc and vermiculite mine from the province of Córdoba (Argentina) was investigated with special emphasis on the occurrence of asbestiform and non-asbestiform phases. The meta-ultramafic rock was studied by a multimethodological approach, complementing field studies with petrographic-mineralogical, compositional and morphological analyses. Samples were examined by stereomicroscopy, polarizing light microscopy, SEM–EDS, XRD, DSC-TGA and FTIR. Complementary, compositional and textural analyses were performed with FE-SEM–EDS and EPMA. Talc-rich veins with a laminar and fibrous appearance were at first recognized. However, the fibrous morphology observed both in the field and by microscopy is due to an apparent habit because of the sample orientation. To avoid erroneous interpretations, studies by secondary electron images (SEM) are fundamental to carrying out this type of analysis. Tremolite was identified in different zones of the outcrop; however, only ~40% of the crystals located in the vermiculite zone have dimensions to be considered as asbestiform fibres in the range of respirable particles. In these types of complex deposits affected by superimposed metamorphic, igneous and deformational events, multimethodological approaches are necessary to develop models of occurrence of asbestiform morphologies that may be applicable to other with similar characteristics.  相似文献   

6.
7.
In this study, the chemical and Sr isotopic compositions of shallow groundwater and rainwater in the Ordos Desert Plateau, North China, and river water from the nearby Yellow River, are investigated to determine the dissolved Sr source and water–rock interactions, and quantify the relative Sr contribution from each end-member. Three groundwater systems have been identified, namely, GWS-1, GWS-2 and GWS-3 according to the watershed distribution in the Ordos Desert Plateau. Ca2+ and Mg2+ are the most dominant cations in GWS-1, while Na+ is dominant in GWS-3. In addition, there is more SO42− and less Cl in GWS-1 than in GWS-3. The shallow groundwater in GWS-2 seems to be geochemically between that in GWS-1 and GWS-3. The 87Sr/86Sr ratios of the shallow groundwater are high in GWS-1 and GWS-2 and are low in GWS-3. By geochemically comparing the nearby Yellow River, local precipitation and deep groundwater, the shallow groundwater is recharged only by local precipitation. The ionic and isotopic ratios indicate that carbonate dissolution is an important process controlling the chemistry of the shallow groundwater. The intensity of the water–rock interactions varies among the three groundwater systems and even within each groundwater system. Three end-members controlling the groundwater chemistry are isotopically identified: (1) precipitation infiltration, (2) carbonate dissolution and (3) silicate weathering. The relative Sr contributions of the three end-members show that precipitation infiltration and carbonate dissolution are the primary sources of the shallow groundwater Sr in GWS-3 whereas only carbonate dissolution is responsible for the shallow groundwater Sr in GWS-1 and GWS-2. Silicate weathering seems insignificant towards the shallow groundwater's chemistry in the Ordos Desert Plateau. This study is helpful for understanding groundwater chemistry and managing water resources.  相似文献   

8.
9.
Summary Minute inclusions of phlogopite and a chlorite-vermiculite intergrade mineral occur in the vesuvianite from rodingite at Przemiów (Lower Silesia). The same inclusions were found in its blackwall, i.e. outer metasomatic zone formed at the expense of adjacent ultrabasic rock. These findings demonstrate that potassium was released from the rodingite protolith during the Ca-metasomatism that accompanied low-temperature serpentinization and was consumed by phlogopite formed in the rodingite blackwall. Fresh phlogopite persists as small inclusions in vesuvianite. The abundant phlogopite-derived intergrade chlorite-vermiculite in the blackwall documents the potassium-rich composition of the protolith of the rodingite, though its primary chemistry is highly modified during metasomatic processes. The rodingite blackwall can be useful as tracer of the metamorphic and tectonic episodes obscured during complex geological evolution of the ophiolite.
Schichtsilikate von Rodingit- Blackwalls aus Przemiów (Niederschlesien, Polen): Mineralogische Dokumentation metasomatischer Prozesse während der Serpentinisierung und der Rekristallisation von Serpentinit
Zusammenfassung Winzige Einschlüsse von Phlogopit und einem K-führenden Chlorit-Vermiculit Mineral wurden in Vesuvian aus Rodingiten von Przemiów (Niederschlesien) gefunden. Dieselben Minerale treten in der sogenannten Blackwall, i.e. der äußeren metasomatischen Zone, die sich auf Kosten der angrenzenden Ultrabasite gebildet hat, auf. Diese Ergebnisse zeigen, daß Kalium aus dem Rodingit-Protolith während der Ca-Metasomatose, die die Niedrig-Temperatur 5erpentinisierung begleitete, freigesetzt wurde und von Phlogopit, der sich in der Blackwall bildete, konsumiert wurde. Frische kleine Phlogopite sind als Einschlüsse in Vesuvian erhalten geblieben. Das aus dem Phlogopit entstandene verbreitete Chlorit-Vermiculit Mineral belegt eine Kaliumreiche Zusammensetzung des Rodingit-Protoliths, obwohl die primäre Chemie durch metasomatische Prozesse stark verändert wurde.


With 7 Figures  相似文献   

10.
11.
Coronitic metagabbronorites (so-called hyperites) and metabasites occur within gneisses, migmatites and minor granulites in the high-grade metamorphic Góry Sowie Block in the Sudetes (SW Poland). Incompatible trace-element and )Nd data, combined with field and petrographic evidence, suggest that three groups may be distinguished: (1) "enriched" amphibolites (Zr/Nb ca. 8, )Nd500 +1 - +2.5), (2) "depleted" amphibolites (Zr/Nb >30, )Nd500 +5 - +6), and (3) metagabbronorites (Zr/Nb 13-19, )Nd500 scattered between +5.3 and -1). These characteristics favour an extensional within-plate setting, consistent with their field occurrence as small bodies scattered within metasedimentary and felsic metaigneous gneisses. In that setting, enriched mantle sources were partially melted to produce a range of basic magmas, showing affinities with continental tholeiites (within plate-type basalts). Presumably, in a more advanced stage of rifting, more depleted varieties, transitional to N-MORB, were emplaced. These mafic magmas were variably contaminated during their ascent in the crust. The metagabbronorites, with their well-preserved igneous textures, were previously interpreted as having been intruded after the main deformation and after the peak of amphibolite facies metamorphism (some authors suggesting a relation to the "circum Góry Sowie ophiolites"). However, the geochemical characteristics and P-T estimates suggest that the metagabbronorites are unrelated to the ophiolitic gabbros found in the neighbourhood of the Góry Sowie Block and, in contrast to them, have experienced a complex, polybaric P-T path.  相似文献   

12.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

13.
Temporal variations in the concentration and N isotopic ratios of inorganic N (NH4– and NO3–N) as affected by the soil temperature regime together with the input of bird excreta were analyzed in a sedentary soil under a dense colony (1.6 nests/m2) of breeding Black-tailed Gulls (Laruscrassirostris: a ground-nesting seabird). Surface soil samples were taken monthly from mid-March to late July 2005 from Kabushima Island, Hachinohe, northeastern Japan. The spatial concentration of inorganic N in the soils varied considerably on all sampling dates. There may be a statistically significant trend, showing increased NH4–N content from settlement up to early June when the input of fecal N attains its maximum, and then decreases towards the end of breeding activity (early August). Abundant NO3–N was observed in all soils, particularly in the later stage of breeding (up to 3800 mg-N/kg dry soil), refuting earlier claims that nitrification is unimportant in the soils. δ15N values of NH4 in the soils showed unusually high values up to +51‰, reflecting N isotope fractionation due to volatilization of NH3 during the mineralization. Mean δ15N values of the monthly collected totals of NH4 and NO3 were not significantly different at the 5% level based on ANOVA and significant differences were observed only among the three means of NO3–N collected in mid-March (settlement of colony: δ15N = −0.2 ± 3.5‰) and late July (later stages of breeding: δ15N = +22.1 ± 7.0‰, +23.3 ± 7.8‰) at the 1% and 5% levels by t-test, respectively. Such an observation of significantly increased δ15N values for NO3–N in soils from the fledgling stage indicates the integration of denitrification coupled with nitrification under a limited supply of fecal N.  相似文献   

14.
In the old mining area of Rodalquilar, mine wastes, soil and sediments were characterized and the results revealed high concentration of Au, Ag, As, Bi, Cu, Fe, Mn, Pb, Se, Sb and Zn in tailings and sediments. The contaminant of greatest environmental concern is As. The mean concentration in the tailings was 679.9, and 345 mg/kg in the sediments of Playazo creek. The groundwater samples from the alluvial aquifer showed high concentration of Al, As, Cd, Fe, Hg, Mn, Ni, Pb, Se, Sb and Zn and very high concentration of chloride and sulfate, which were above the concentration defined in the European standards for drinking water. The presence of As in groundwater may be caused by the oxidation of arsenian pyrite, the possible As desorption from goethite and ferrihydrite and the jarosite dissolution. Groundwater concentrations of Cd, Fe, Mn, and possibly Cu, were associated with low values of Eh, indicating the possible dissolution of oxy-hydroxides of Fe and Mn. The mobility of metals in the column experiments show the release of Al, Fe, Mn, Cr, Cu, Ni, V and Zn in significant concentrations but below the detected values in groundwater. However, As, Cd, Sb, Se Pb and Au, are generally mobilized in concentrations above the detected values in groundwater. The possible mass transfer processes that could explain the presence of the contaminants in the aquifer and the leachates was simulated with the PHREEQC numerical code and revealed the possible dissolution of the following mineral phases: jarosite, natrojarosite, arsenian pyrite, alunite, chlorite, kaolinite and calcite.  相似文献   

15.
16.
The aim of this article is to examine the geochemistry and geochronology of the Cadomian Mishu granites from northwest Iran, in order to elucidate petrogenesis and their role in the evolution of the Cadomian crust of Iran. The Mishu granites mainly consist of two-mica granites associated with scarce outcrops of tonalite, amphibole granodiorite, and diorite. Leucogranitic dikes locally crosscut the Mishu granites. Two-mica granites show S-type characteristics whereas amphibole granodiorite, tonalities, and diorites have I-type signatures. The I-type granites show enrichment in large-ion lithophile elements (e.g. Rb, Ba and K) and depletion in high field strength elements (e.g. Nb, Ti and Ta). These characteristics show that these granites have been formed along an ancient, fossilized subduction zone. The S-type granites have high K, Rb, Cs (and other large ion lithophile elements) contents, resembling collision-related granites. U–Pb zircon dating of the Mishu rocks yielded 238U/206Pb crystallization ages of ca. 550 Ma. Moreover, Rb–Sr errorchron shows an early Ediacaran age (547 ± 84 Ma) for the Mishu igneous rocks. The two-mica granites (S-type granites) show high 87Sr/86Sr(i) ratios, ranging from 0.7068 to 0.7095. Their ?Nd values change between ?4.2 and ?4.6. Amphibole granitoids and diorites (I-type granites) are characterized by relatively low 87Sr/86Sr(i) ratios (0.7048–0.7079) and higher values of ?Nd (?0.8 to ?4.2). Leucogranitic dikes have quite juvenile signature, with ?Nd values ranging from +1.1 to +1.4 and Nd model ages (TDM) from 1.1 to 1.2 Ga. The isotopic data suggests interaction of juvenile, mantle-derived melts with old continental crust to be the main factor for the generation of the Mishu granites. Interaction with older continental crust is also confirmed by the presence of abundant inherited zircon cores. The liquid-line of descend in the Harker diagrams suggests fractional crystallization was also a predominant mechanism during evolution of the Mishu I-type granites. The zircon U–Pb ages, whole rock trace elements, and Sr–Nd isotope data strongly indicate the similarities between the Mishu Cadomian granites with other late Neoproterozoic–early Cambrian (600–520 Ma) granites across Iran and the surrounding areas such as Turkey and Iberia. The generation of the Mishu I-type granites could be related to the subduction of the Proto-Tethyan Ocean during Cadomian orogeny, through interaction between juvenile melts and old (Mesoproterozoic or Archaean) continental crust. The S-type granites are related to the pooling of the basaltic melts within the middle–upper parts of the thick continental crust and then partial melting of that crust.  相似文献   

17.
The Kodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Googowy unit and the Kodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Googowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Kodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Teplá-Barrandian domain are exposed in the Central Sudetes.  相似文献   

18.
Chemical and isotopic analyses of groundwater from the carbonated Jurassic aquifers in the Gijón-Villaviciosa basin (Asturias, northern Spain) were carried out. Nine springs were sampled to determine major cations and anions, as well as the stable isotopes of the water molecule (δ2H and δ18O) and sulphate (δ34S) values. Also, δ34S values from gypsum coming both from Triassic rocks and bottom of Jurassic sequence were also determined. The results obtained were used to classify the waters with a genetic criteria in three groups: (1) waters with a high gypsum influence, with sulphate coming from Jurassic gypsum, (2) waters without gypsum influence, where sulphate source could be atmospheric deposition from industrial processes and marine aerosol, and (3) waters with some gypsum influence, in which sulphate origin could be a combination of different sources. In relation to recharge, δ2H and δ18O values were close to those of Global Meteoric Water Line and fit a local line that suggests a meteoric origin. The estimated elevations for spring recharge are in agreement with those obtained from hydrogeological maps.  相似文献   

19.
The near-surface water cycle in a geologically complex area comprises very different sources including meteoric, metamorphic and magmatic ones. Fluids from these sources can react with sedimentary, magmatic and/or metamorphic rocks at various depths. The current study reports a large number of major, minor and trace element analyses of meteoric, mineral, thermal and mine waters from a geologically well-known and variable area of about 200 × 150 km in SW Germany. The geology of this area comprises a Variscan granitic and gneissic basement overlain in parts by Triassic and Jurassic shales, sandstones and limestones. In both the basement and the sedimentary rocks, hydrothermal mineralization occurs (including Pb, Cu, As, Zn, U, Co and many others) which were mined in former times. Mineral waters, thermal waters and meteoric waters flowing through abandoned mines (mine waters) are distributed throughout the area, although the mine waters concentrate in and around the Schwarzwald.The present analyses show, that the major element composition of a particular water is determined by the type of surrounding rock (e.g., crystalline or sedimentary rocks) and the depth from which the water originates. For waters from crystalline rocks it is the origin of the water that determines whether the sample is Na–Cl dominant (deeper origin) or Ca–HCO3 dominant (shallow origin). In contrast, compositions of waters from sedimentary rocks are determined by the availability of easily soluble minerals like calcite (Ca–HCO3 dominant), halite (Na–Cl dominant) or gypsum (Ca–SO4 dominant). Major element data alone cannot, therefore, be used to trace the origin of a water. However, the combination of major element composition with trace element data can provide further information with respect to flow paths and fluid–rock interaction processes. Accordingly, trace element analyses showed, that:
  • −Ce anomalies can be used as an indicator for the origin of a water. Whereas surface waters have negative or strongly negative Ce anomalies, waters originating from greater depths show no or only weak negative Ce anomalies.
  • −Eu anomalies can be used to differentiate between host rocks. Waters from gneisses display positive Eu anomalies, whereas waters from granites have negative ones. Waters from sedimentary rocks do not display any Eu anomalies.
  • −Rb and Cs can also be indicators for the rock with which the fluid interacted: Rb and Cs correlate positively in most waters with Rb/Cs ratios of ∼2, which suggests that these waters are in equilibrium with the clay minerals in the rocks. Rb/Cs ratios >5 indicate reaction of a water with existing clay minerals, whereas Rb/Cs ratios <2 are probably related to host rock alteration and clay mineral formation.
The chemical compositions of carbonate precipitates from thermal waters indicate that rare earth elements (REEs), Rb and Cs concentrations in the minerals are controlled by the incorporation of clay particles that adsorb these elements.  相似文献   

20.
The sedimentary succession exposed in the Gorzów Wielkopolski area includes Eemian Interglacial (MIS 5e) or Early Weichselian (MIS 5d–e) deposits. The sedimentary sequence has been the object of intense interdisciplinary study, which has resulted in the identification of at least two palaeolake horizons. Both yielded fossil remains of large mammals, alongside pollen and plant macrofossils. All these proxies have been used to reconstruct the environmental conditions prevailing at the time of deposition, as well as to define the geological context and the biochronological position of the fauna. Optically stimulated luminescence dating of the glaciofluvial layers of the GS3 succession to 123.6 ± 10.1 (below the lower palaeolake) and 72.0 ± 5.2 ka (above the upper palaeolake) indicate that the site formed during the Middle–Late Pleistocene (MIS 6 – MIS 5). Radiocarbon-dating of the lacustrine organic matter revealed a tight cluster of Middle Pleniglacial Period (MIS 3) ages in the range of ~41–32 ka cal bp (Hengelo – Denekamp Interstadials). Holocene organic layers have also been found, with 14C ages within a range of 4330–4280 cal bp (Neolithic). Pollen and plant macrofossil records, together with sedimentological and geochemical data, confirm the dating to the Eemian Interglacial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号